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Abstract –Built-In Self-Test (BIST) provides an effective 
way to test configurable cores in System-on-Chip (SoC) 
implementations. We present a case study of the use of 
dynamic reconfiguration from an embedded processor 
core to implement BIST for the programmable logic and 
routing resources in configurable cores in commercially 
available SoCs. Experimental results from actual imple-
mentations include speed-up and memory savings ob-
tained and compared to traditional BIST approaches for 
configurable cores. 1 
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1 Introduction 
Testing time and cost for System-on-Chips (SoCs) 

is high due to the large scale integration ratio in a single 
chip [1]. Typical commercially available microcontroller-
based SoCs consist of peripherals for the microcontroller, 
associated Random Access Memory (RAM) cores to 
implement program/data memory space, and Field Pro-
grammable Gate Array (FPGA) based configurable cores, 
along with other cores. Testing configurable cores re-
quires numerous configuration downloads to completely 
test the various modes of operation of the programmable 
logic and routing resources. The basic approach to Built-
In Self-Test (BIST) of FPGAs and FPGA-based config-
urable cores is to program some of the programmable 
logic blocks (PLBs) as Test Pattern Generators (TPGs) 
and Output Response Analyzers (ORAs) to test remain-
ing programmable logic and routing resources. As a re-
sult, this imposes no area or performance penalties on the 
normal system function [2]. BIST eliminates the need for 
expensive external test equipment but still requires a 
large number of configuration downloads. Furthermore, 
the size of each configuration download file is large due 
to large amount of programmable resources. As a result, 
the download time for testing configurable cores in SoCs 
dominates the total test time of the SoC and, hence, the 
total test cost [3]. 

In this paper, we investigate the improvements in 
the total test time required to completely test embedded 
configurable cores by the algorithmic generation of BIST 
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configurations using an embedded microcontroller fol-
lowed by dynamic partial reconfiguration of the FPGA-
based core for subsequent BIST configurations. As a 
result, all external configuration downloads are elimi-
nated since the embedded processor programs the FPGA-
based core for BIST, executes the BIST sequence, re-
trieves the BIST results, and executes diagnostic proce-
dures to locate and identify faults detected by the BIST. 
The paper begins in Section 2 with an overview of the 
Atmel AT94K series Field Programmable System Level 
Integrated Circuit (FPSLIC) [4] used as the target SoC 
for this case study. However, we emphasize that the tech-
nique can be used in any SoC with an embedded proces-
sor capable of dynamic partial reconfiguration of embed-
ded configurable cores. We present the BIST architec-
tures developed for the programmable logic and routing 
resources in Section 3 along with experimental results 
from actual implementations in various size AT94K se-
ries SoCs in terms of the improvements in test time and 
memory storage requirements compared to traditional 
external downloads of BIST configurations. The paper 
concludes in Section 4 with an overview of other applica-
tions for this approach.  

2 Overview of SoC Architecture 
The Atmel AT94K series SoC consists of an FPGA 

core, various RAM cores, and an 8-bit Advanced Virtual 
RISC (AVR) microcontroller core [4]. The FPGA core is 
based on a fine-grain architecture that has a large number 
of small PLBs [5]. The FPGA core consists of a symmet-
rical N×N array of PLBs, where N=48 for the AT94K40 
device (the largest AT94K series SoC) [4]. Each PLB 
contains two 3-input Look-Up Tables (LUTs), a D flip-
flop, and additional multiplexers/gates. Every PLB has 
dedicated diagonal (X) and orthogonal (Y) local routing 
resources to its neighboring PLBs, as shown in Figure 1a. 
As shown in Figure 1b, vertical and horizontal global 
routing resources are associated with each PLB that trav-
erse four PLBs (×4) and eight PLBs (×8). Vertical and 
horizontal bus repeaters are placed at the boundaries of 
every 4×4 array of PLBs (as shown in Figure 1c for the 
horizontal case) to prevent signal degradation in lengthy 
and/or heavily loaded signal nets. Bank clock and 
set/reset lines are associated with the vertical repeaters 
running to groups of four PLBs in each column within a 
repeater boundary. 
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The various RAM cores consist of three types of 

memory resources [4]: 1) many small 32×4-bit RAMs 
distributed throughout the FPGA core, 2) a 4-Kbyte to 
16-Kbyte dual-port data RAM shared by AVR microcon-
troller and the FPGA core, and 3) a 20-kbyte to 32-Kbyte 
program memory accessible only by the AVR microcon-
troller and used for executing AVR programs. 

The AVR core is an 8-bit RISC architecture with 32 
general purpose registers including a number of peripher-
als like watchdog timer, UART, etc [4]. There are two 8-
bit bi-directional general purpose I/O ports referred to as 
PORTD and PORTE. An 8-bit bi-directional data bus 
between the FPGA and AVR provides communications 
between the two cores. Whenever 8-bit data is written to 
(or read from) the data bus by the AVR, a strobe signal to 
the FPGA is generated on FPGAIOWE (or FPGAIORE) 
along with one of 16 decoded select lines to the FPGA. 
There are up to four external interrupts to the AVR along 
with 16 interrupts from the FPGA. 

The AVR microcontroller core can write to (but not 
read from) the FPGA core configuration memory such 
that the FPGA can be dynamically reconfigured (either 
fully or partially) by the AVR core during normal system 
operation [4]. The FPGA configuration memory access is 
via a 24-bit address bus and 8-bit data bus. The address 
bus is partitioned into three 8-bit components referred to 
as FPGAX, FPGAY, and FPGAZ. FPGAX and FPGAY 
correspond to horizontal, vertical location of the pro-
grammable resource in the array while FPGAZ corre-
sponds to specific logic/routing resources within the 
specified programmable resource. A write to the 8-bit 
data bus, FPGAD, results in a write cycle to the FPGA 
core configuration memory. 

Prior work in BIST for the AT94K series SoC re-
sulted in a total of 68 BIST configurations for complete 
testing of the SoC with the exception of the AVR micro-
controller, as summarized in Table 1 [3]. The FPGA core 
requires the vast majority of the configurations to be 

downloaded into the SoC and, hence, testing the FPGA 
core accounts for the majority of the total testing time as 
a result of those downloads. 

Table 1. BIST Configurations for AT94K SoC [3] 
Core # Configs Resources Tested 

2 program memory 
3 dual-port data RAM RAMs
3 distributed RAMs in FPGA 

16 PLBs - also tests local routing 
16 Routing - global cross-point PIPsFPGA
28 Routing - repeaters 

Total 68 not including AVR processor 

3 Processor Reconfiguration of BIST 
A significant reduction in testing time is possible by 

developing programs to algorithmically generate BIST 
configurations from the AVR along with dynamic partial 
reconfiguration of subsequent BIST configurations for 
the FPGA core. BIST for FPGAs is typically partitioned 
into BIST for the programmable logic resources and 
BIST for the programmable routing resources [2]. 

3.1 Logic BIST 
The BIST architecture for testing the PLB resources 

configures a column of PLBs to function as two or more 
identical TPGs that drive identical test patterns to alter-
nating columns of identically configured blocks under 
test (BUTs) whose outputs are monitored by comparison-
based ORAs located in adjacent columns between the 
BUTs [6]. Since a PLB cannot be configured to have 
more than one X-input and one Y-input selected at a time, 
the BIST architecture as shown in Figure 2a is used 
wherein each ORA monitors a diagonal X-output and an 
orthogonal Y-output from their neighboring BUTs [3]. 
The BUTs are reconfigured in various modes of opera-
tion until they are completely tested. The BIST architec-
ture is then flipped about the vertical axis, as illustrated in 
Figure 2b, to test the PLBs that were previously TPGs 
and ORAs for the complete test of all PLBs in the array 
as BUTs. 

 
The algorithmic BIST configuration generation and 

reconfiguration program for the embedded AVR core was 
developed in C. The execution sequence of the subrou-
tines in the program is as follows: 

1. Clear FPGA – clears FPGA configuration memory by 
writing default inactive values; also executed when 
there are transitions between test sessions. 

a) west session b) east session 

=TPG 
=BUT 
=ORA 

Routing 
Scheme 1 
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Figure 2.  Logic BIST Architecture 
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2. Instantiate ORAs – places, routes, and configures 
ORAs with connections to BUTs; the ORA flip-flops 
are also initialized. 

3. Instantiate/reconfigure BUTs – places, routes (to 
global routing resources), and configures BUTs; during 
reconfiguration for subsequent BIST configurations 
only the BUT mode of operation and local routing 
connections are modified. 

4. Instantiate TPGs – places, routes, and configures two 
5-bit counters in the TPG column of the PLB array; 
global routing from TPGs to BUTs is also performed 
along with initialization of the TPG flip-flops. 

5. Route BIST clock from AVR interface – connects the 
FPGA Write Enable (FPGAIOWE) line from the AVR 
interface to a global clock input line and routes the 
clock to TPGs, BUTs, and ORAs. 

6. Generate BIST clock – generates clock cycles to FPGA 
core (via FPGAIOWE) to execute the BIST sequence 
during which TPGs generate test patterns and ORAs 
latch any mismatches observed in BUTs due to faults. 

7. Reconfigure ORAs as shift register – ORAs are dy-
namically reconfigured as a shift register without af-
fecting BIST result contents of the ORA flip-flops. 

8. Route shift register output to AVR – routes output of 
last ORA in shift register to data input of the AVR core. 

9. Retrieve ORA results – shifts contents of ORA shift 
register into the AVR and stores results in data RAM. 

The subroutines are summarized in Table 2 in terms 
of the number of non-commented lines of C source code, 
the number of bytes of program memory storage required, 
and the number of processor execution cycles to execute 
each subroutine in an AT94K10 (24×24 PLB array) and 
an AT94K40 (48×48 PLB array). Note that the execution 
time in terms of the number of processor cycles is a func-
tion of the array size with the exception of the generating 
the BIST clock cycles since the length of the BIST se-
quence is independent of array size. In addition to the 
subroutines described, there are additional miscellaneous 
subroutines used to communicate and transfer BIST and 
diagnostic results to a higher computing resource (a PC in 
our case); the processor execution time for these miscel-
laneous subroutines is not considered in the total time. 

Table 2. Logic BIST Configuration Routine Analysis 
Processor CyclesBIST 

Subroutine 
Memory 
(bytes) 

Lines of 
C Code  K10 K40 

Clear FPGA 492 150 59,664 215,128
Instantiate BUT 834 300 25,829 100,360
Instantiate ORA 220 70 14,844 60,686
Instantiate TPG 1,486 600 4,652 14,866

Route BIST clock 234 40 1,923 4,911
ORA/shift register 282 80 6,371 24,791

Generate clocks 32 6 456 456
Route shift out 402 45 24,879 97,370
Retrieve results 306 35 19,339 75,859
Miscellaneous 388 2,659 N/A N/A 

Total 4,676 4,000 157,957 594,427

The FPGA core is typically reset during external 
downloads of BIST configurations and, as a result, the 
BIST results must be retrieved after each BIST configura-
tion has been executed. Dynamic partial reconfiguration, 
on the other hand, does not affect the contents of the 
ORAs and, as a result, the ORA contents can be retrieved 
after each BIST configuration or after each test session 
consisting of a set of BIST configurations to attain faster 
test time. In the latter case, there is some loss in diagnos-
tic resolution but not in fault detection capabilities. Faulty 
BUTs can still be identified with the loss in diagnostic 
resolution being the ability to identify the failing mode of 
operation of the BUT. 

3.2 Routing BIST 
The routing BIST architecture shown in Figure 3 is 

a modified parity-based BIST approach [7]. Here a 2-bit 
binary count value is used in conjunction with a parity bit 
to supply a 3-bit test pattern to a group of wires under 
test. The 3-bit test pattern is applied to all five ×4 wires 
of the bus structure associated with each PLB with the 
parity bit applied to the middle wire segment and the two 
count values are applied to both pairs of outer wire seg-
ments. The TPG can be count-up (initialized to all 0s) 
with even parity or count-down (initialized to all 1s) with 
odd parity. The test pattern sequences produced by these 
two TPGs produce opposite logic values on any possible 
pair of bits for at least two cases such that both 0-1 and 1-
0 combinations exist. As a result, this set of test patterns 
is effective in detecting stuck-at faults, bridging faults, 
and opens in wire segments as well as stuck-on and 
stuck-off faults in PIPs and multiplexers. 

 
The subroutines used to construct the routing BIST 

generation and reconfiguration program are similar to 
those for logic BIST. Two routing BIST routines are used 
to test the cross-point PIPs and repeaters as summarized 
in Table 3 in terms of the number of configurations re-
quired for complete testing, the number of bytes of pro-
gram memory storage required, and the number of proc-
essor execution cycles to execute each routine in an 
AT94K40. Similar to logic BIST, the 48×48 PLB array of 
the AT94K40 requires about four times the number of 
processor execution cycles compared to the AT94K10. 
Note that the original download repeater BIST configura-
tions in Table 1 required only 28 configurations while a 
total of 40 configurations were needed to completely test 
the repeaters in Table 3. Efficient algorithmic BIST con-
figuration generation and reconfiguration requires very 
regular BIST structures and we found that more regular-
ity in the BIST structure (compared to [3]) could be ob-
tained at the expense of additional BIST configurations. 

Par

Figure 3.  Parity-based Routing BIST Architecture 
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Table 3. Routing BIST Configuration Routine Analysis 
BIST 

Subroutine 
# 

Configs 
Memory 
(bytes) 

Lines of 
C Code  

Processor 
Cycles K40 

Cross-points 16 3,442 519 1,906,745
Repeaters 40 4,412 636 6,671,973

Total 56 7,854 1,155 8,578,718

3.3 Experimental Results 
The programs for algorithmic BIST configuration 

generation and reconfiguration for subsequent logic and 
routing BIST configurations were implemented and veri-
fied on both AT94K10 and AT94K40 SoCs. The total 
test time is given in Table 4 for the AT94K40 device. The 
total test time is calculated by adding the download time 
and BIST execution time, including BIST results retrieval 
time. External download uses a maximum clock fre-
quency of 1MHz in order to check for download errors 
via a check-sum function [4]. Since the FPGA core can 
operate at maximum clock frequency of 25 MHz, BIST 
execution time is calculated assuming that the BIST clock 
runs at 25 MHz. This data was obtained both from simu-
lation of the programs in AVR Studio and from measur-
ing actual download and execution times in several 
AT94K40 devices. As can be seen, a speed-up of almost 
a factor of 45 in total testing time is obtained. 

Table 4. Total Test Time and Speed-up 
Resource Function Download Processor Speed-up

Download 7.680 sec 0.101 sec 76.0
Execution 0.016 sec 0.085 sec 0.2Logic 

BIST 
Total time 7.696 sec 0.186 sec 41.4
Download 20.064 sec 0.110 sec 182.4
Execution 0.026 sec 0.343 sec 0.075Routing 

BIST 
Total time 20.090 sec 0.453 sec 44.3

Total Test Time 27.786 sec 0.639 sec 43.5

The combined programs for logic and routing BIST 
configurations require about 12.6 Kbytes of the total 32 
Kbytes available in the program memory of the AT94K 
series SoC. An additional 2.5 Kbytes of program memory 
space is required for diagnostic procedures and for com-
munications with higher computing resources to report 
BIST and diagnostic results. This amounts to almost 50% 
of the available program memory space and, as a result, 
may not be desirable for permanent residence in the pro-
gram memory. Therefore, the total test time data included 
in Table 4 includes download of the BIST configuration 
generation program into the program memory. When 
downloading a program into the AT94K series device, 
additional configuration data is required for functions 
such as setting control registers and directing the machine 
language code to the program and data memories. 

The external memory requirements in terms of the 
number and sizes of files for storing the complete BIST 
generation and execution programs with diagnostic and 
communication procedures are summarized in Table 5 
and compared to download BIST configuration approach 
used in [3]. The memory reduction by a factor of 158 for 
the combined logic and routing BIST is significant in that 
it makes the use of BIST at the system level more feasible. 

Table 5. Total Memory Reduction 
Download Processor Resource

Tested Average 
File Size 

# 
Files

File 
Size 

# 
Files 

Memory 
Reduction

Factor 
Logic 60 Kbyte 16 12 Kbyte 1 80

Routing 57 Kbyte 44 14 Kbyte 1 179
Combined 58 Kbyte 60 22 Kbyte 1 158

4 Conclusions 
We have developed a single program to algorithmi-

cally generate BIST configurations on-chip via the em-
bedded processor core. This program includes the com-
plete reconfiguration, execution, and retrieval of test 
results during BIST of the programmable logic and rout-
ing resources in the FPGA core of the Atmel AT94K 
series configurable SoC. We have demonstrated the im-
provements in the total test time and in BIST configura-
tion memory storage requirements that result based on 
actual implementation and verification in AT94K10 and 
AT94K40 devices. The ability to perform dynamic partial 
reconfiguration of embedded FPGA core from the em-
bedded processor core within the chip boundary provides 
a major improvement to testing capability with a speed-
up in total testing time by a factor of 43.5 and a reduction 
in external memory storage requirements by a factor of 
158. As a result, this program can easily be used for 
manufacturing testing and/or incorporated into the system 
for on-demand BIST and diagnosis of the FPGA core for 
fault-tolerant applications.  

Acknowledgement 

The content of the information in this paper does 
not necessarily reflect the position or the policy of the 
federal government, and no official endorsement should 
be inferred. 

References 
[1] K. Yeom, J. Song, P. Min, and S. Park, “A Recon-
figurable Test Access Mechanism for Embedded Core 
Test,” Proc. IEEK International SoC Design Conf., pp. 
396-399, 2004 

[2] C. Stroud, A Designer’s Guide to Built-In Self-Test, 
Kluwer Academic Publishers, Boston, 2002 

[3] C. Stroud, J. Sunwoo, S. Garimella, and J. Harris, 
“Built-In Self-Test For System-on-Chip: A Case Study,” 
Proc. IEEE International Test Conf., pp. 837-846, 2004 

[4] __, “AT94K Series Field Programmable System 
Level Integrated Circuit,” Datasheet, Atmel Corp., 2001 

[5] S. Donthi and R. Haggard, “A Survey of dynami-
cally reconfigurable FPGA devices,” Proc. Southeastern 
Symp. on System Theory, pp. 422-426, 2003 

[6] M. Abramovici and C. Stroud, “BIST-Based Test 
and Diagnosis of FPGA Logic Blocks,” IEEE Trans. On 
VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001 

[7] X. Sun, J. Xu, B. Chan, and P. Trouborst, “Novel 
Technique for BIST of FPGA Interconnects,” Proc. 
IEEE International Test Conf., pp. 795-803, 2000 


