
Built-In Self-Test of Configurable Cores in SoCs Using
Embedded Processor Dynamic Reconfiguration

John Sunwoo

Digital Home Research Division
Electronics and Telecommunications Research Institute

Daejeon, Korea
bistdude@etri.re.kr

Charles Stroud
Electrical and Computer Engineering

Auburn University
Auburn, Alabama, USA

strouce@auburn.edu

Abstract –Built-In Self-Test (BIST) provides an effective
way to test configurable cores in System-on-Chip (SoC)
implementations. We present a case study of the use of
dynamic reconfiguration from an embedded processor
core to implement BIST for the programmable logic and
routing resources in configurable cores in commercially
available SoCs. Experimental results from actual imple-
mentations include speed-up and memory savings ob-
tained and compared to traditional BIST approaches for
configurable cores. 1

Keywords: Built-In Self-Test (BIST), Field Program-
mable Gate Array (FPGA), Embedded Microcontroller.

1 Introduction
Testing time and cost for System-on-Chips (SoCs)

is high due to the large scale integration ratio in a single
chip [1]. Typical commercially available microcontroller-
based SoCs consist of peripherals for the microcontroller,
associated Random Access Memory (RAM) cores to
implement program/data memory space, and Field Pro-
grammable Gate Array (FPGA) based configurable cores,
along with other cores. Testing configurable cores re-
quires numerous configuration downloads to completely
test the various modes of operation of the programmable
logic and routing resources. The basic approach to Built-
In Self-Test (BIST) of FPGAs and FPGA-based config-
urable cores is to program some of the programmable
logic blocks (PLBs) as Test Pattern Generators (TPGs)
and Output Response Analyzers (ORAs) to test remain-
ing programmable logic and routing resources. As a re-
sult, this imposes no area or performance penalties on the
normal system function [2]. BIST eliminates the need for
expensive external test equipment but still requires a
large number of configuration downloads. Furthermore,
the size of each configuration download file is large due
to large amount of programmable resources. As a result,
the download time for testing configurable cores in SoCs
dominates the total test time of the SoC and, hence, the
total test cost [3].

In this paper, we investigate the improvements in
the total test time required to completely test embedded
configurable cores by the algorithmic generation of BIST

1 This work was sponsored by the Dept. of the Army, SMDC,
under grant W9113M-04-1-0002.

configurations using an embedded microcontroller fol-
lowed by dynamic partial reconfiguration of the FPGA-
based core for subsequent BIST configurations. As a
result, all external configuration downloads are elimi-
nated since the embedded processor programs the FPGA-
based core for BIST, executes the BIST sequence, re-
trieves the BIST results, and executes diagnostic proce-
dures to locate and identify faults detected by the BIST.
The paper begins in Section 2 with an overview of the
Atmel AT94K series Field Programmable System Level
Integrated Circuit (FPSLIC) [4] used as the target SoC
for this case study. However, we emphasize that the tech-
nique can be used in any SoC with an embedded proces-
sor capable of dynamic partial reconfiguration of embed-
ded configurable cores. We present the BIST architec-
tures developed for the programmable logic and routing
resources in Section 3 along with experimental results
from actual implementations in various size AT94K se-
ries SoCs in terms of the improvements in test time and
memory storage requirements compared to traditional
external downloads of BIST configurations. The paper
concludes in Section 4 with an overview of other applica-
tions for this approach.

2 Overview of SoC Architecture
The Atmel AT94K series SoC consists of an FPGA

core, various RAM cores, and an 8-bit Advanced Virtual
RISC (AVR) microcontroller core [4]. The FPGA core is
based on a fine-grain architecture that has a large number
of small PLBs [5]. The FPGA core consists of a symmet-
rical N×N array of PLBs, where N=48 for the AT94K40
device (the largest AT94K series SoC) [4]. Each PLB
contains two 3-input Look-Up Tables (LUTs), a D flip-
flop, and additional multiplexers/gates. Every PLB has
dedicated diagonal (X) and orthogonal (Y) local routing
resources to its neighboring PLBs, as shown in Figure 1a.
As shown in Figure 1b, vertical and horizontal global
routing resources are associated with each PLB that trav-
erse four PLBs (×4) and eight PLBs (×8). Vertical and
horizontal bus repeaters are placed at the boundaries of
every 4×4 array of PLBs (as shown in Figure 1c for the
horizontal case) to prevent signal degradation in lengthy
and/or heavily loaded signal nets. Bank clock and
set/reset lines are associated with the vertical repeaters
running to groups of four PLBs in each column within a
repeater boundary.

strouce
Note
from Proc. International SoC Design Conf., pp. 174-177, 2005

The various RAM cores consist of three types of

memory resources [4]: 1) many small 32×4-bit RAMs
distributed throughout the FPGA core, 2) a 4-Kbyte to
16-Kbyte dual-port data RAM shared by AVR microcon-
troller and the FPGA core, and 3) a 20-kbyte to 32-Kbyte
program memory accessible only by the AVR microcon-
troller and used for executing AVR programs.

The AVR core is an 8-bit RISC architecture with 32
general purpose registers including a number of peripher-
als like watchdog timer, UART, etc [4]. There are two 8-
bit bi-directional general purpose I/O ports referred to as
PORTD and PORTE. An 8-bit bi-directional data bus
between the FPGA and AVR provides communications
between the two cores. Whenever 8-bit data is written to
(or read from) the data bus by the AVR, a strobe signal to
the FPGA is generated on FPGAIOWE (or FPGAIORE)
along with one of 16 decoded select lines to the FPGA.
There are up to four external interrupts to the AVR along
with 16 interrupts from the FPGA.

The AVR microcontroller core can write to (but not
read from) the FPGA core configuration memory such
that the FPGA can be dynamically reconfigured (either
fully or partially) by the AVR core during normal system
operation [4]. The FPGA configuration memory access is
via a 24-bit address bus and 8-bit data bus. The address
bus is partitioned into three 8-bit components referred to
as FPGAX, FPGAY, and FPGAZ. FPGAX and FPGAY
correspond to horizontal, vertical location of the pro-
grammable resource in the array while FPGAZ corre-
sponds to specific logic/routing resources within the
specified programmable resource. A write to the 8-bit
data bus, FPGAD, results in a write cycle to the FPGA
core configuration memory.

Prior work in BIST for the AT94K series SoC re-
sulted in a total of 68 BIST configurations for complete
testing of the SoC with the exception of the AVR micro-
controller, as summarized in Table 1 [3]. The FPGA core
requires the vast majority of the configurations to be

downloaded into the SoC and, hence, testing the FPGA
core accounts for the majority of the total testing time as
a result of those downloads.

Table 1. BIST Configurations for AT94K SoC [3]
Core # Configs Resources Tested

2 program memory
3 dual-port data RAM RAMs
3 distributed RAMs in FPGA

16 PLBs - also tests local routing
16 Routing - global cross-point PIPsFPGA
28 Routing - repeaters

Total 68 not including AVR processor

3 Processor Reconfiguration of BIST
A significant reduction in testing time is possible by

developing programs to algorithmically generate BIST
configurations from the AVR along with dynamic partial
reconfiguration of subsequent BIST configurations for
the FPGA core. BIST for FPGAs is typically partitioned
into BIST for the programmable logic resources and
BIST for the programmable routing resources [2].

3.1 Logic BIST
The BIST architecture for testing the PLB resources

configures a column of PLBs to function as two or more
identical TPGs that drive identical test patterns to alter-
nating columns of identically configured blocks under
test (BUTs) whose outputs are monitored by comparison-
based ORAs located in adjacent columns between the
BUTs [6]. Since a PLB cannot be configured to have
more than one X-input and one Y-input selected at a time,
the BIST architecture as shown in Figure 2a is used
wherein each ORA monitors a diagonal X-output and an
orthogonal Y-output from their neighboring BUTs [3].
The BUTs are reconfigured in various modes of opera-
tion until they are completely tested. The BIST architec-
ture is then flipped about the vertical axis, as illustrated in
Figure 2b, to test the PLBs that were previously TPGs
and ORAs for the complete test of all PLBs in the array
as BUTs.

The algorithmic BIST configuration generation and

reconfiguration program for the embedded AVR core was
developed in C. The execution sequence of the subrou-
tines in the program is as follows:

1. Clear FPGA – clears FPGA configuration memory by
writing default inactive values; also executed when
there are transitions between test sessions.

a) west session b) east session

=TPG
=BUT
=ORA

Routing
Scheme 1

Routing

Scheme 2

Figure 2. Logic BIST Architecture

Y

Y

Y Y

X X

X X
PLB

= Programmable
Interconnect
Point (PIP)

Figure 1. Configurable Core Architecture

(a) local routing (b) global routing (1 PLB)

(c) horizontal repeaters in global routing
4 PLBs 8 PLBs

×4 lines ×8 lines repeaters

2. Instantiate ORAs – places, routes, and configures
ORAs with connections to BUTs; the ORA flip-flops
are also initialized.

3. Instantiate/reconfigure BUTs – places, routes (to
global routing resources), and configures BUTs; during
reconfiguration for subsequent BIST configurations
only the BUT mode of operation and local routing
connections are modified.

4. Instantiate TPGs – places, routes, and configures two
5-bit counters in the TPG column of the PLB array;
global routing from TPGs to BUTs is also performed
along with initialization of the TPG flip-flops.

5. Route BIST clock from AVR interface – connects the
FPGA Write Enable (FPGAIOWE) line from the AVR
interface to a global clock input line and routes the
clock to TPGs, BUTs, and ORAs.

6. Generate BIST clock – generates clock cycles to FPGA
core (via FPGAIOWE) to execute the BIST sequence
during which TPGs generate test patterns and ORAs
latch any mismatches observed in BUTs due to faults.

7. Reconfigure ORAs as shift register – ORAs are dy-
namically reconfigured as a shift register without af-
fecting BIST result contents of the ORA flip-flops.

8. Route shift register output to AVR – routes output of
last ORA in shift register to data input of the AVR core.

9. Retrieve ORA results – shifts contents of ORA shift
register into the AVR and stores results in data RAM.

The subroutines are summarized in Table 2 in terms
of the number of non-commented lines of C source code,
the number of bytes of program memory storage required,
and the number of processor execution cycles to execute
each subroutine in an AT94K10 (24×24 PLB array) and
an AT94K40 (48×48 PLB array). Note that the execution
time in terms of the number of processor cycles is a func-
tion of the array size with the exception of the generating
the BIST clock cycles since the length of the BIST se-
quence is independent of array size. In addition to the
subroutines described, there are additional miscellaneous
subroutines used to communicate and transfer BIST and
diagnostic results to a higher computing resource (a PC in
our case); the processor execution time for these miscel-
laneous subroutines is not considered in the total time.

Table 2. Logic BIST Configuration Routine Analysis
Processor CyclesBIST

Subroutine
Memory
(bytes)

Lines of
C Code K10 K40

Clear FPGA 492 150 59,664 215,128
Instantiate BUT 834 300 25,829 100,360
Instantiate ORA 220 70 14,844 60,686
Instantiate TPG 1,486 600 4,652 14,866

Route BIST clock 234 40 1,923 4,911
ORA/shift register 282 80 6,371 24,791

Generate clocks 32 6 456 456
Route shift out 402 45 24,879 97,370
Retrieve results 306 35 19,339 75,859
Miscellaneous 388 2,659 N/A N/A

Total 4,676 4,000 157,957 594,427

The FPGA core is typically reset during external
downloads of BIST configurations and, as a result, the
BIST results must be retrieved after each BIST configura-
tion has been executed. Dynamic partial reconfiguration,
on the other hand, does not affect the contents of the
ORAs and, as a result, the ORA contents can be retrieved
after each BIST configuration or after each test session
consisting of a set of BIST configurations to attain faster
test time. In the latter case, there is some loss in diagnos-
tic resolution but not in fault detection capabilities. Faulty
BUTs can still be identified with the loss in diagnostic
resolution being the ability to identify the failing mode of
operation of the BUT.

3.2 Routing BIST
The routing BIST architecture shown in Figure 3 is

a modified parity-based BIST approach [7]. Here a 2-bit
binary count value is used in conjunction with a parity bit
to supply a 3-bit test pattern to a group of wires under
test. The 3-bit test pattern is applied to all five ×4 wires
of the bus structure associated with each PLB with the
parity bit applied to the middle wire segment and the two
count values are applied to both pairs of outer wire seg-
ments. The TPG can be count-up (initialized to all 0s)
with even parity or count-down (initialized to all 1s) with
odd parity. The test pattern sequences produced by these
two TPGs produce opposite logic values on any possible
pair of bits for at least two cases such that both 0-1 and 1-
0 combinations exist. As a result, this set of test patterns
is effective in detecting stuck-at faults, bridging faults,
and opens in wire segments as well as stuck-on and
stuck-off faults in PIPs and multiplexers.

The subroutines used to construct the routing BIST

generation and reconfiguration program are similar to
those for logic BIST. Two routing BIST routines are used
to test the cross-point PIPs and repeaters as summarized
in Table 3 in terms of the number of configurations re-
quired for complete testing, the number of bytes of pro-
gram memory storage required, and the number of proc-
essor execution cycles to execute each routine in an
AT94K40. Similar to logic BIST, the 48×48 PLB array of
the AT94K40 requires about four times the number of
processor execution cycles compared to the AT94K10.
Note that the original download repeater BIST configura-
tions in Table 1 required only 28 configurations while a
total of 40 configurations were needed to completely test
the repeaters in Table 3. Efficient algorithmic BIST con-
figuration generation and reconfiguration requires very
regular BIST structures and we found that more regular-
ity in the BIST structure (compared to [3]) could be ob-
tained at the expense of additional BIST configurations.

Par

Figure 3. Parity-based Routing BIST Architecture
local routing resources

C1 C0 ORA ORA

global
×4

lines

Table 3. Routing BIST Configuration Routine Analysis
BIST

Subroutine

Configs
Memory
(bytes)

Lines of
C Code

Processor
Cycles K40

Cross-points 16 3,442 519 1,906,745
Repeaters 40 4,412 636 6,671,973

Total 56 7,854 1,155 8,578,718

3.3 Experimental Results
The programs for algorithmic BIST configuration

generation and reconfiguration for subsequent logic and
routing BIST configurations were implemented and veri-
fied on both AT94K10 and AT94K40 SoCs. The total
test time is given in Table 4 for the AT94K40 device. The
total test time is calculated by adding the download time
and BIST execution time, including BIST results retrieval
time. External download uses a maximum clock fre-
quency of 1MHz in order to check for download errors
via a check-sum function [4]. Since the FPGA core can
operate at maximum clock frequency of 25 MHz, BIST
execution time is calculated assuming that the BIST clock
runs at 25 MHz. This data was obtained both from simu-
lation of the programs in AVR Studio and from measur-
ing actual download and execution times in several
AT94K40 devices. As can be seen, a speed-up of almost
a factor of 45 in total testing time is obtained.

Table 4. Total Test Time and Speed-up
Resource Function Download Processor Speed-up

Download 7.680 sec 0.101 sec 76.0
Execution 0.016 sec 0.085 sec 0.2Logic

BIST
Total time 7.696 sec 0.186 sec 41.4
Download 20.064 sec 0.110 sec 182.4
Execution 0.026 sec 0.343 sec 0.075Routing

BIST
Total time 20.090 sec 0.453 sec 44.3

Total Test Time 27.786 sec 0.639 sec 43.5

The combined programs for logic and routing BIST
configurations require about 12.6 Kbytes of the total 32
Kbytes available in the program memory of the AT94K
series SoC. An additional 2.5 Kbytes of program memory
space is required for diagnostic procedures and for com-
munications with higher computing resources to report
BIST and diagnostic results. This amounts to almost 50%
of the available program memory space and, as a result,
may not be desirable for permanent residence in the pro-
gram memory. Therefore, the total test time data included
in Table 4 includes download of the BIST configuration
generation program into the program memory. When
downloading a program into the AT94K series device,
additional configuration data is required for functions
such as setting control registers and directing the machine
language code to the program and data memories.

The external memory requirements in terms of the
number and sizes of files for storing the complete BIST
generation and execution programs with diagnostic and
communication procedures are summarized in Table 5
and compared to download BIST configuration approach
used in [3]. The memory reduction by a factor of 158 for
the combined logic and routing BIST is significant in that
it makes the use of BIST at the system level more feasible.

Table 5. Total Memory Reduction
Download Processor Resource

Tested Average
File Size

Files

File
Size

Files

Memory
Reduction

Factor
Logic 60 Kbyte 16 12 Kbyte 1 80

Routing 57 Kbyte 44 14 Kbyte 1 179
Combined 58 Kbyte 60 22 Kbyte 1 158

4 Conclusions
We have developed a single program to algorithmi-

cally generate BIST configurations on-chip via the em-
bedded processor core. This program includes the com-
plete reconfiguration, execution, and retrieval of test
results during BIST of the programmable logic and rout-
ing resources in the FPGA core of the Atmel AT94K
series configurable SoC. We have demonstrated the im-
provements in the total test time and in BIST configura-
tion memory storage requirements that result based on
actual implementation and verification in AT94K10 and
AT94K40 devices. The ability to perform dynamic partial
reconfiguration of embedded FPGA core from the em-
bedded processor core within the chip boundary provides
a major improvement to testing capability with a speed-
up in total testing time by a factor of 43.5 and a reduction
in external memory storage requirements by a factor of
158. As a result, this program can easily be used for
manufacturing testing and/or incorporated into the system
for on-demand BIST and diagnosis of the FPGA core for
fault-tolerant applications.

Acknowledgement

The content of the information in this paper does
not necessarily reflect the position or the policy of the
federal government, and no official endorsement should
be inferred.

References
[1] K. Yeom, J. Song, P. Min, and S. Park, “A Recon-
figurable Test Access Mechanism for Embedded Core
Test,” Proc. IEEK International SoC Design Conf., pp.
396-399, 2004

[2] C. Stroud, A Designer’s Guide to Built-In Self-Test,
Kluwer Academic Publishers, Boston, 2002

[3] C. Stroud, J. Sunwoo, S. Garimella, and J. Harris,
“Built-In Self-Test For System-on-Chip: A Case Study,”
Proc. IEEE International Test Conf., pp. 837-846, 2004

[4] __, “AT94K Series Field Programmable System
Level Integrated Circuit,” Datasheet, Atmel Corp., 2001

[5] S. Donthi and R. Haggard, “A Survey of dynami-
cally reconfigurable FPGA devices,” Proc. Southeastern
Symp. on System Theory, pp. 422-426, 2003

[6] M. Abramovici and C. Stroud, “BIST-Based Test
and Diagnosis of FPGA Logic Blocks,” IEEE Trans. On
VLSI Systems, Vol. 9, No. 1, pp. 159-172, 2001

[7] X. Sun, J. Xu, B. Chan, and P. Trouborst, “Novel
Technique for BIST of FPGA Interconnects,” Proc.
IEEE International Test Conf., pp. 795-803, 2000

