

Built-In Self-Test for System-on-Chip: A Case Study
Charles Stroud, John Sunwoo, Srinivas Garimella, and Jonathan Harris

Dept. of Electrical and Computer Engineering
Auburn University, Alabama USA

ABSTRACT - We describe the development of Built-In
Self-Test (BIST) for a generic SoC consisting of a Field
Programmable Gate Array (FPGA) core for application
specific logic along with a processor and several mem-
ory cores. Our target device was the Atmel AT94K se-
ries System-on-Chip (SoC), also known as a Field Pro-
grammable System Level Integrated Circuit (FPSLIC).
The original goal for this project was to develop BIST
configurations to completely test the programmable
logic and routing resources of the FPGA core and then
to use the FPGA core to test the other cores. We found
that the FPGA can provide only limited testing of the
some memory cores and even less testing of the proces-
sor. The processor, on the other hand, provides more
effective testing of some memory cores than the FPGA
core. In addition, the ability of the processor to write the
FPGA configuration memory provides an improved and
more efficient method of testing the FPGA core. As a
result, the processor core was the primary testing re-
source instead of the FPGA.1

1. INTRODUCTION
A new approach to Built-In Self-Test (BIST) for

System-on-Chip (SoC) devices that contain one or more
Field Programmable Gate Array (FPGA) cores was pro-
posed in [1]. The basic idea is to use BIST approaches
developed for FPGAs to first completely test and diag-
nose the FPGA core found in many generic SoC archi-
tectures. These FPGA BIST approaches reprogram the
FPGA logic and routing resources with BIST circuitry
to allow the FPGA to test itself while off-line without
the need for external test equipment or dedicated cir-
cuitry for BIST [1]. Once tested and diagnosed, the
fault-free portion of the FPGA core can then be used to
test and diagnose other cores in the SoC. As proposed in
[1], the FPGA core provides the primary resource for
testing the SoC, complete with the advantages associ-
ated with BIST for FPGAs, reducing the need for ex-
pensive external test equipment and the need for dedi-
cated BIST or other design-for-testability (DFT) cir-
cuitry. While this appears to be a potentially good ap-
proach to SoC testing, it has not been applied to a pro-
duction SoC in practice. As a result, we set out to apply
this idea to a generic, commercial SoC.

1 This work was sponsored by the National Security Agency

under contract H98230-04-C-1177 and by the Dept. of the
Army, SMDC, under grant W9113M-04-1-0002.

The Atmel AT94K series Field Programmable Sys-
tem Level Integrated Circuit (FPSLIC) is a generic SoC
architecture that consists of three main types of core
functions: an 8-bit processor core, an FPGA core, and
different types of Random Access Memory (RAM)
cores [2]. Due to the large FPGA core, this SoC archi-
tecture appears to be a good candidate for the applica-
tion of the BIST approach proposed in [1]. During the
course of our development, we found that a number of
practical architectural issues prevented the direct appli-
cation of the SoC testing approach as originally pro-
posed. For example, the limited interfaces between the
FPGA core and the other cores significantly restrict the
ability of the FPGA core to test the other cores. How-
ever, the architecture provides a number of features and
capabilities that offer unique opportunities for SoC test-
ing in a different manner than that proposed in [1]. For
example, the ability of the processor core to write the
FPGA configuration memory allows the application of
BIST for the FPGA core without the need for time-
consuming downloads of the BIST configurations
needed to test the FPGA core.

In this paper, we present our investigation of the ap-
plication of the BIST approach for SoCs proposed in [1]
to the Atmel AT94K series SoC. We describe obstacles
that prevent direct application of the approach as origi-
nally proposed as well as architectural features and ca-
pabilities that lead to new methods for testing SoCs con-
taining FPGA cores. We begin in Section 2 with an
overview of the BIST approach proposed in [1] fol-
lowed by an overview of the AT94K series SoC archi-
tecture in Section 3. In Section 4 we describe the archi-
tectural limitations that prevent the complete application
of the BIST approach proposed in [1] and describe those
portions of the SoC that can be tested with that BIST
approach. We then describe the approaches we used to
test the FPGA core, the various RAM cores, and the
processor core in Sections 5, 6, and 7 respectively. In
Section 8, we show the improvements obtained when
testing the FPGA core via the processor compared to the
more traditional approaches to BIST for FPGAs and we
conclude the paper in Section 9.

2. PREVIOUSLY PROPOSED BIST FOR SOCS
The basic idea of the SoC BIST proposed in [1] is to

test the FPGA core first and then use the FPGA core to
test other cores. The underlying idea in BIST for FPGAs
is to configure some of the programmable logic blocks

strouce
Note
from Proc. IEEE International Test Conf., pp. 837-846, 2004

(PLBs) as Test Pattern Generators (TPGs) and as Output
Response Analyzers (ORAs). These are then used to
detect faults in PLBs under test (BUTs) in logic BIST or
wires under test (WUTs) in routing BIST.

Typically, in logic BIST, the BUTs and ORAs are
arranged in alternating columns (or rows) and multiple
identical TPGs are used to drive the alternating columns
(or rows) of BUTs [3]. The output responses of the
identically programmed BUTs are compared by ORAs
in neighboring columns (or rows). During a given test
session, the BUTs are repeatedly reconfigured in their
various modes of operation until they are completely
tested. During the next test session, this architecture is
flipped and the roles of the PLBs are then reversed such
that those previously configured as TPGs and ORAs
become BUTs and vice versa. The PLBs can be tested
in only two test sessions when at least half the PLBs are
configured as BUTs during a given test session.

Two types of routing BIST approaches have proven
to be effective in testing the programmable interconnect
resources in FPGAs. The first is a comparison-based
approach in which the TPG drives exhaustive test pat-
terns over two sets of WUTs that are compared at the
other end by a comparison-based ORA [4]. The second
approach is parity-based where the TPG sources ex-
haustive test patterns over a set of WUTs and produces
a parity-bit that is sent to the ORA [5]. The ORA gener-
ates parity over the data observed on the WUTs and
compares the generated parity-bit with that sent by the
TPG. While both approaches have been shown to be
effective in detecting faults, the comparison-based ap-
proach was extended to diagnosis of faults in the pro-
grammable interconnect network [4].

Once the FPGA core is tested, it can be configured
to test other cores [1]. A common core could be a RAM
where the FPGA is programmed with the TPG and
ORA functions to perform RAM BIST. The TPG pro-
duces a March test while the ORA compares the output
responses of the RAM with expected output responses
produced by the TPG. An important underlying assump-
tion in the approach proposed in [1] is that the FPGA
has complete access to the RAM inputs/outputs. Simi-
larly, the FPGA could be used to test other cores that
would normally be tested by external means. While it
was assumed that these cores may or may not have em-
bedded design-for-testability circuitry such as scan-
chains, it was assumed that the design-for-testability
circuitry and the inputs/outputs of the core to be tested
were accessible by the FPGA core [1]. Once the other
cores are tested, the FPGA can be reconfigured with the
desired system function such that there is no BIST area
or performance penalty other than the memory needed
to store the BIST configurations needed to test the
FPGA and other cores.

3. OVERVIEW OF AT94K SERIES SOC
The AT94K series SoC architecture (illustrated in

Figure 1) consists of three major components: 1) an
FPGA core, 2) three types of SRAM cores, and 3) an 8-
bit Advanced Virtual RISC (AVR) processor core [2].
The processor core includes a variety of peripheral units
such as 16-bit timer/counters and Universal Asynchro-
nous Receiver-Transmitters (UARTs). The thee types of
SRAM cores include: 1) small 128-bit RAMs dispersed
throughout the FPGA core, 2) a 20-Kbyte to 32-Kbyte
processor program memory, and 3) a 4-Kbyte to 16-
Kbyte dual-port data RAM shared between the FPGA
and processor cores with one port interfacing to the
FPGA and the other to the processor.

The total RAM capacity between the program and
data memories is 36-Kbytes [2]. The variation in the
sizes of each RAM results from a 12-Kbyte RAM parti-
tion that can be swapped between program and data
memories in 4-Kbyte pieces. While the FPGA can read
all of the address locations in both program and data
memories, it can only write to the data memory portion
of the complete 36-Kbyte RAM space. The FPGA inter-
face to the data and program memories consists of a 16-
bit address bus, an 8-bit write data bus, an 8-bit read
data bus, and a write enable. The processor core, on the
other hand, can write and read the entire RAM space
with the exception of a small portion of the data RAM
that can only be accessed by FPGA. The processor in-
terface to the data and program memories consists of a
16-bit address bus, an 8-bit bi-directional data bus, and
control lines for read and write enables.

The small RAM cores (called free RAMs in Atmel
terminology) are distributed evenly through the FPGA
core with one RAM for every 4×4 array of PLBs [2].
Each free RAM is a 32×4-bit memory and can operate
as a synchronous or asynchronous single-port or dual-
port RAM. It should be noted that the dual-port RAM
mode simply has separate write and read ports and is not
a true dual-port RAM. The single-port RAM mode has a
single address bus and a bi-directional data bus.

=RAM =PLB =repeater

Figure 1. AT94K series Soc architecture

AVR
Processor

FPGA

Data
RAM

Program
Memory

Peripheral
Units

8 data

read, write,
18 select lines

16 interrupts

16 address

2 control
8 data

8
data

3
cont

16
address

The interface between the processor and FPGA
cores (excluding the shared data RAM) consists of six-
teen decoded select lines from the processor to the
FPGA, an 8-bit bi-directional data bus, a read enable
and a write enable from the processor to the FPGA, and
sixteen interrupt lines from the FPGA to the processor
[2]. In addition, the processor core can write the FPGA
core configuration memory such that the FPGA can be
dynamically reconfigured (fully or partially) by the
processor core during normal system operation. This
configuration memory access is facilitated through a 24-
bit address bus and an 8-bit data bus. The address bus is
partitioned into three 8-bit components (called FPGAX,
FPGAY, and FPGAZ) that specify the address of the
target configuration memory byte of the FPGA to be
reconfigured. The FPGA is PLB addressable where the
X and Y address values correspond to the horizontal and
vertical location, respectively, of the PLB to be recon-
figured. The Z address corresponds to specific logic and
routing resources within the specified PLB.

The FPGA core consists of an Atmel AT40K series
FPGA comprised of an N×N array of PLBs [2]. As illus-
trated in Figure 2, each PLB consists of two 3-input
look-up tables (LUTs), a set/reset D flip-flop, a number
of multiplexers, and an AND gate to provide a variety
of logic functions. This PLB is small compared to most
other FPGAs, only about one-fourth the size of the
ORCA 2C or Xilinx Virtex/Spartan II PLBs. This small
PLB size presents some interesting problems in BIST
implementations, as will be discussed in Section 5.

The X-outputs and Y-outputs of each PLB connect
diagonally and orthogonally via dedicated local routing
resources to its neighboring PLBs, as illustrated in Fig-
ure 3a [2]. In addition, there are five vertical and five
horizontal global busing planes associated with each
PLB as shown in Figure 3b. Each busing plane consists
of two outside wire segments (referred to as express
wires) and a middle wire segment. The four inputs to
the PLB as well as the output from the PLB can connect
to the middle wire segment of any of the global busing
planes associated with the PLB. The X and Y inputs to

the PLB (shown in Figure 2) can be selected via non-
decoded multiplexers from any of their respective four
direct local connections or from any of the five vertical
or five horizontal global connections. The W and Z in-
puts to the PLB can only be selected from any of the
five vertical or five horizontal global connections. Pro-
grammable interconnect points (PIPs) of the cross-point
type are located at all intersections of the vertical and
horizontal global busses. For every 4×4 array of PLBs,
buffered bus repeaters in the five global busing planes
prevent signal degradation in lengthy and/or heavily
loaded nets. The repeaters also provide all possible
combinations of connections between express and mid-
dle wire segments connected to the repeater as illus-
trated in Figure 3c.

4. APPLYING SOC BIST TO AT94K SERIES SOC
In our attempt to apply the BIST ideas proposed in

[1] to the Atmel AT94K series SoC, we found that some
of the ideas could be applied but many could not. The
cores that can be tested as proposed include the FPGA
core, the free RAM cores, but only a single port of the
shared data RAM. The cores that cannot be tested as
proposed in [1] include the dual-port of the data RAM,
the program memory, and the processor core. The in-
ability to test these cores from the FPGA is primarily
due to the limited interfaces and interconnect access

Y
LUT

X
LUT

X

W

Y

Z

1
0 config

mem bit clk
set/reset

L
to global

routing

Y

X

to local
routing

to local
routing

Figure 2. PLB architecture

Y

XY

Y

X

PPLBB

PLB

PLB PLB

PLB PLB

XYX

PLB PLB PLB

a) local routing

b) global routing
Figure 3. Routing resources

Vertical Wires

Horizontal
Wires

PLB

=PIP

c) repeater
connections

express middle

express middle

to/from the FPGA core. The processor core, on the other
hand, has better access to most other cores than the
FPGA core. Most significant is the processor core write
access to the FPGA configuration memory which, as
will be shown, allows the processor core to provide the
primary test access and control resource for BIST of the
SoC. The FPGA core becomes a secondary, although
very important, testing resource since it can be easily
reconfigured and controlled by the processor.

5. FPGA CORE BIST
The BIST for the programmable logic and routing

resources in the FPGA core is similar to the BIST de-
scribed in [1]. Due to the small size of the PLBs, a num-
ber of modifications were required to both logic and
routing BIST as will be discussed. In logic BIST, a 5-bit
binary up-counter is used for each TPG while compari-
son-based ORAs are used for their fault detection effec-
tiveness and good diagnostic resolution [3]. The test
patterns are routed from the TPGs to the BUTs via
global interconnected resources while the BUT-to-ORA
connections are made using local routing resources.
However, the local routing architecture of the FPGA
and the PLB architecture allow only a single X output
and a single Y output from the adjacent BUTs to be
observed by the ORA. Therefore, an alternating routing
scheme was devised which allows for complete testing
of the PLBs. The two routing schemes shown in Figure
4 are alternated during successive test configurations in
order to provide observability of both X and Y outputs
from each PLB. The BIST architecture is column-based
due to bank clocks and set/resets in the array of PLBs.

Our first set of logic BIST configurations for the
FPGA core were developed using Atmel’s Macro Gen-
eration Language (MGL) [6]. The MGL provides a
method of creating design-specific implementations in
the FPGA through the use of dynamic macros. The
MGL code can be utilized to create functions in which
logical specification and physical layout of dynamic
macros and their respective interconnect can be speci-
fied in a programming-like environment. However, the
dynamic macros provide the user with limited control of
the configuration bits associated with the PLBs [6]. As a

result, five BIST configurations were required in each
test session in order to obtain 98.8% single stuck-at gate
level fault coverage of the PLBs.

We determined through fault simulations that only
three BIST configurations are needed to obtain 100%
fault coverage only if complete control of the configura-
tion bits for the BUTs is available and all outputs of the
BUTs are simultaneously observable (including X and
Y outputs as well as the L output to global routing).
However, with only complete control of the configura-
tion bits while observing only the X and Y outputs of
the BUTs, four BIST configurations of the BUTs are
required to obtain a fault coverage of 99.7%. With these
four configurations, only one potentially detected fault
is left and this fault is detected during routing BIST
such that 100% fault coverage is obtained with the
complete set of BIST configurations. The individual
(FCIND) and cumulative (FCCUM) fault coverage ob-
tained with these four BIST configurations are summa-
rized in Table 1 along with individual and cumulative
fault coverage obtained for the five BIST configurations
obtained with MGL and the theoretical best-case three
BIST configurations assuming complete control of con-
figurations bits and observability of all PLB outputs.

Table 1. Logic BIST configurations fault coverage
MGL [6] X-Y Outputs Theoretical BUT

Config FCIND FCCUM FCIND FCCUM FCIND FCCUM

1 59.6% 59.6% 59.6% 59.6% 62.3% 62.3%
2 53.6% 85.5% 50.6% 89.8% 59.6% 95.8%
3 49.1% 91.3% 59.5% 97.9% 57.5% 100%
4 43.4% 95.5% 35.5% 99.7%
5 31.3% 97.9%

Complete control of the configuration bits for the
BUTs is available through the processor core access to
the FPGA configuration memory. As a result, the dy-
namic partial reconfiguration of the FPGA core by the
processor not only reduces the number of logic BIST
configurations but also provides higher fault coverage.
Furthermore, it was observed that for the BUTs located
on the edge of the array, the fault coverage was much
lower (only about 83%) than that of the middle BUTs
since both X and Y outputs in the BUTs along the edge
of the array are not observable in all BIST configura-
tions. By utilizing the dynamic partial reconfiguration of
the FPGA by the processor, the BUT-to-ORA connec-
tions at the edges of the array can be changed during
each BUT configuration to obtain the same fault cover-
age as in the middle of the array. This results in minimal
increase in testing time since only the BUT-to-ORA
connections along the edges of the array need to be re-
configured and the FPGA core can be partially recon-
figured without affecting the flip-flop values present in
the PLBs. An alternative technique is to rotate the floor

a) Test Session 1 b) Test Session 2

=TPG
=BUT
=ORA

Routing
Scheme 1

Routing
Scheme 2

Figure 4. Logic BIST architecture

plan of the two test sessions illustrated in Figure 4 by
90° such that the BIST architecture is now row-based
and to apply all four test sessions. While this doubles
the total number of logic BIST configurations, it not
only overcomes the lower fault coverage along the edge
of the array but also provides nearly complete testing of
all local routing resources during logic BIST. In addi-
tion, the four test sessions provide improved multiple
fault detection capabilities and diagnostic resolution [3].

Dynamic partial reconfiguration overcomes another
problem associated with the small PLB size. The PLB
does not have sufficient logic resources to implement a
comparison-based ORA with a shift register for retriev-
ing the BIST results at the end of the BIST sequence.
This can be seen in Figure 5 where there is a conflict for
the Y input to the PLB by the BUT output and the shift
register input. In addition, the contents of the PLB flip-
flop cannot be read by the processor core. Therefore, we
use partial reconfiguration via the processor core to re-
configure the ORAs into a shift register chain in order to
retrieve the BIST results and diagnose the location of
the faulty PLB(s) at the end of each BIST configuration.

The BIST for the programmable interconnect re-
quires more configurations than that for the logic BIST
due to the fact that most of the area in FPGAs is con-
sumed by the routing resources and their configuration
memory bits [7]. A modified version of the parity-based
routing BIST approach in [5] was found to be more effi-
cient in terms of the total number of BIST configura-
tions than the comparison-based BIST approach in [4]
due to the limited ORA implementations that can be
obtained with the small PLB. In this modified architec-
ture, a 2-bit binary counter is used in conjunction with
even or odd parity generators to provide test patterns to
the set of WUTs with the generated parity bit used as an
additional test pattern along with the 2-bit count value.
The ORA consists of the corresponding parity check
circuit as illustrated in Figure 6. The TPG, ORA and
WUTs are confined to as small an area as possible for
the particular routing resources under test. This area is
called a self-test area (STAR) [4]. The FPGA is popu-
lated with multiple STARs that execute their BIST se-
quences concurrently. Diagnostic resolution obtained
from a failing ORA indication is to that STAR [4].

The local routing resources associated with each
PLB consist of the X and Y direct connections (Figure

3a) and four PLB input multiplexers with up to fourteen
connections: five from the horizontal global buses, five
from the vertical global busses, and four from the direct
connections. These local routing resources are nearly
completely tested during the four logic BIST sessions.
The exception is the direct diagonal X connections
which require four additional routing BIST configura-
tions.

Within the global routing resources there are hori-
zontal and vertical repeaters placed throughout the array
for every four PLBs. Each repeater consists of four 3-
input non-decoded multiplexers as shown in Figure 3c.
Eight BIST configurations are used to completely test
the vertical repeaters along with another eight BIST
configurations for the horizontal repeaters. Two
examples of these repeater tests are illustrated in Figure
7 where alternating up-count/even-parity and down-
count/odd-parity TPGs drive alternating sets of WUTs
in order to detect bridging faults and stuck-on faults in
some of the PIPs in the repeater while other PIPs are
being tested for stuck-off faults. As the eight BIST con-
figurations are applied, all multiplexer PIPs in the re-
peater cell are tested for stuck-on and stuck-off faults.

Eight configurations are used to test the cross-point
PIPs interconnecting a given set of global express bus-
ses for both stuck-off and stuck-on faults. A simplified
example of the cross-point PIP BIST configurations is
illustrated in Figure 8. During subsequent BIST con-

Figure 5. Logic BIST ORA

ORA shift data
Shift Control

Outputs
from

BUTs PLB

X
Y

Y Z

Pass/
Fail

Figure 8. Routing BIST for cross-point PIPs

= TPG
= ORA
= unused PLB
= cross-point off
= cross-point on

opposite logic values

Figure 7. Routing BIST for repeaters

=TPG

=repeater

=ORA

Figure 6. Routing BIST architecture

Pass
Fail

ORA

Cnt0

Cnt1

Parity
WUTs

T
P
G

figurations, the on cross-point PIPs that are being tested
for stuck-off faults would shift down through the rows
until all cross-point PIPs are tested. Opposite logic val-
ues are driven from the neighboring STAR on one bus
per BIST configuration in order to test the PIPs for
stuck-on faults. Since there are two sets of express bus-
ses, a total of sixteen BIST configurations are used.

A total of 36 routing BIST configurations are re-
quired to test all of the programmable routing resources,
not including those local routing resources tested by the
16 logic BIST configurations. These are summarized in
Table 2. The STAR size is given in terms of the size of
the PLB array needed to implement the BIST circuitry
and, as a result, the diagnostic resolution associated with
a failing routing BIST ORA indication. For better diag-
nostic resolution, additional diagnostic BIST configura-
tions can be developed and applied in order to locate a
faulty wire segment or PIP [4]. As in the case of logic
BIST, dynamic partial reconfiguration from the proces-
sor core is used to reconfigure the ORAs into a shift
register for BIST results retrieval. Note that the routing
resources associated with the free RAMs in the array are
tested as a part of the RAM BIST since these routing
resources are dedicated for access to/from the RAMs.

Table 2. Routing BIST Configurations
Routing Resource # Configs STAR size

direct X connections 4 4×4
vertical repeater cells 8 1×16

horizontal repeater cells 8 16×1
express bus cross-points 16 8×8

Total Routing BIST 36

6. RAM CORE BIST
The free RAMs dispersed over the entire array of the

FPGA core and located in every 4×4 array of PLBs have
all inputs/outputs accessible by the PLBs and routing
resources of the FPGA core. Therefore, these RAMs can
be tested by the FPGA core with PLBs configured to
function as TPGs and ORAs as proposed in [1]. Except
for those RAMs in the rightmost column of the array, all
free RAMs can operate as either a single-port or dual-
port RAM in synchronous or asynchronous modes. The
RAMs along the rightmost column can only operate in
single-port RAM mode. A total of three RAM BIST
configurations are required to completely test these
RAMs and all of the RAMs are tested in parallel.

The RAMs are tested in their synchronous dual-port
mode using a test algorithm similar to the dual-port
RAM test described in [8]. The March-LR algorithm [9]
is used to test the RAMs in synchronous single-port
mode and the March Y algorithm as described in [10] is
used to test the asynchronous single-port mode. Back-
ground data sequences (BDS) are used to detect

neighborhood pattern sensitive and intra-word coupling
faults [11]. The three RAM BIST configurations are
summarized in Table 2 along with individual and cumu-
lative stuck-at fault coverage obtained via fault simula-
tion. The number of TPG and ORA PLBs used in each
BIST configuration is also included in the table.

Table 3. RAM BIST Configurations
RAM/
Mode

Test al-
gorithm FCIND FCCUM TPG

PLBs
ORA
PLBs

Sync
Dual-Port DPR test 75.4% 75.4% 66 N×(N-2)×8

Sync
Single-Port

March-LR
w/BDS 81.8% 99.8% 123 N×(N-1)×8

Async
Single-Port

March-Y
w/o BDS 75.6% 100% 18 N×(N-1)×8

Data RAM March-LR
w/BDS - - 209 16

N = number of free RAMs in one dimension of array

When testing the dual-port mode, the RAM BIST
architecture employed (illustrated in Figure 10a) is simi-
lar to the one used for logic BIST. A 2-PLB ORA, simi-
lar to the one in Figure 5, compares bit outputs of two
adjacent RAMs and latches any mismatches. When test-
ing the single-port modes, the TPG also generates the
expected results and the ORA compares the expected
results with the output response of a single RAM (Fig-
ure 10b). The active-low output enable (OEN) for the
RAM causes the ORA, illustrated in Figure 11, to com-
pare the expected results with the data from the RAM
when the output enable is asserted. When the output
enable is not asserted, the data from the TPG is written
into the RAM with the ORA comparing the test data

Figure 10. RAM BIST architectures

=TPG =RAM =ORA

a) dual-port RAM b) single-port RAM

Figure 11. Single-port RAM BIST ORA
ORA shift data

Test
Data
from
TPG

Data to/from RAM

 OEN

PLB PLB
Y

X W

Shift Control
Z

Pass/
Fail

from the TPG with the data being written into the RAM.
Both types of ORAs (dual-port and single-port) are con-
nected to form a shift register in order to retrieve the
BIST results after each test sequence. Since the PLB
array utilization is only about 50% (compared to over
98% in logic BIST) the shift register for retrieving BIST
results is incorporated in the ORA such that there is no
need for the processor core to reconfigure the ORAs
into a shift register at the end of the BIST sequence.

An alternative to implementing the TPG in PLBs of
the FPGA core is to implement the TPG functionality as
a program executed by the processor core. This is par-
ticularly important when using the processor core to
partially reconfigure the FPGA core for the various
RAM BIST sequences. The RAM and ORA portion of
the three free RAM BIST architectures given in Table 3
and illustrated in Figure 10 are very similar and also
very regular, much like the logic BIST architecture.
However, the TPG implementations are not similar or
regular, as indicated by the difference in the number of
PLBs used to implement the RAM test algorithms in
Table 3. For more efficient partial reconfiguration of the
RAM BIST sequences by the processor core, it is im-
portant to maintain regular structures for algorithmic
generation of the configuration by the processor core.
This can be accomplished by implementing the TPG
functions as programs executed from the processor,
leaving only the RAMs and ORAs in the FPGA core.

The data RAM core shared by both processor and
FPGA cores is a true dual-port RAM with each core
having access to one port. As a result, the dual-port data
RAM cannot be tested by the FPGA core alone; the
FPGA core can only perform a single-port RAM test.
Therefore, the strategy used to test the dual-port data
RAM is as described in [12]. First the single-port tests
are applied from the two ports separately to test port-
related faults as well as some cell-related faults. The
March-LR test algorithm [9] with background data se-
quences [11] is applied from both sides in single-port
mode. When testing from the FPGA core, the TPG can
be implemented inside the FPGA core along with com-
parison-based ORAs to detect mismatches between the
output responses from the RAM and the expected re-
sults produced by the TPG. As noted in Table 3, this
approach requires 209 PLBs for the TPG and 16 PLBs
for the ORAs. An alternative when testing from the
FPGA core is to implement most of the TPG functional-
ity as a program to be executed by the processor core
and applied to the data RAM via the processor-FPGA
interface. This reduces the number of PLBs required for
the TPG to 30 PLBs.

When testing the other port from the processor core,
the TPG (March-LR with background data sequences)
and ORA functions are implemented as a program exe-

cuted in the processor core. If the shared data RAM
passes both single-port tests, then the dual-port opera-
tion is tested with the March s2pf- and March d2pf-
applied from both ports [12][13]. In this case, both the
processor and FPGA cores are used interactively to per-
form the dual-port RAM test under the control of the
processor core. Hence, the alternative FPGA port BIST
implementation, where most of the TPG is implemented
as a program in the processor core, is used in order to
allow the processor core to maintain control over the
dual-port RAM BIST sequence. In addition, both the
processor and FPGA cores are driven by the same clock
to ensure simultaneous access of memory locations.

The program memory is accessible only by the proc-
essor core and, therefore, cannot be tested by the FPGA
core. The program memory is tested by applying
March-LR single-port tests from the processor core with
the TPG and ORA functions implemented as a program
and executed by the processor. The portion of the pro-
gram memory where the RAM test program is not
stored is first tested. The RAM test program is then re-
located to facilitate testing the remaining part of the
program memory.

7. PROCESSOR CORE BIST
Since the processor core is an important resource for

testing the other cores, it is critical that the processor
core be tested, and probably should be tested first [17].
It was suggested in [1] that the FPGA core could serve
as TPG and ORA functions for other cores besides
RAMs. For example, if a core were to incorporate scan
chains, the FPGA could be configured to provide the
circuitry necessary to perform scan-based BIST on that
core. On the other hand, if the core did not contain scan
chains or other design-for-testability circuitry, the
FPGA core could be used to provide non-intrusive TPG
and ORA functions such as pseudorandom test patterns
and signature analysis, respectively. This latter approach
assumes adequate access of the core inputs/outputs to
facilitate sufficient controllability and observability of
the core for adequate fault coverage.

In the case of the processor core, there are no scan
chains that we know of and there is only limited and
insufficient access to the processor inputs/outputs from
the FPGA core. Since this is a programmable processor
core, we are able to use the software-based self-testing
techniques that have been used for other micro-
processors, such as those proposed in [14-17]. The ap-
proaches described in [14] and [15] seem to be based on
detailed structural knowledge of the target processor to
facilitate high fault coverage in those processors. We
are limited in knowledge to the high level architectural
information given in the datasheets and additional in-
formation that can be derived from the instruction set

and descriptions of the various registers and units within
the processor core [2]. Therefore, we choose to use a
more traditional functional testing approach to exercise
the processor core and its various constituents as in [16]
and [17]. As opposed to providing a test circuitry re-
source, the FPGA core in this case is only used as a
routing resource to test the interfaces between the cores.

8. IMPROVEMENTS TO FPGA AND SOC BIST
In no previous work in BIST for FPGAs, such as

[3]-[8], has an embedded processor core been present
that can write the FPGA configuration memory to util-
ize when implementing BIST methods for FPGAs and
FPGA cores. The first prior work in utilizing the proces-
sor core to test the FPGA core was described in [18].
That approach also used the AT94K series SoC but only
tests the two LUTs in the PLBs. The LUTs are tested
one PLB at a time, rather than concurrently, and the
processor seems to be used for TPG and ORA functions.

When utilizing the processor core for dynamic par-
tial reconfiguration of the FPGA core, only one BIST
configuration needs to be downloaded along with a pro-
gram to be executed by the processor core for the recon-
figuration of subsequent BIST configurations. This pro-
vides an improvement to total test time when compared
to downloading individual BIST configurations. The
download time dominates the total testing time since the
configuration clock runs at a much lower frequency (1
MHz) compared to the processor clock frequency (25
MHz). In addition, the total memory required to store
BIST configurations is reduced. We should also note
that we have performed timing analysis on all of our
BIST configurations and all are capable of maximum
clock frequencies greater than the specified 25 MHz
maximum processor clock frequency.

To illustrate the reduction in total test time and BIST
configuration storage requirements, we begin with logic
BIST. Each of the four BIST configurations associated
with each of the four test sessions contains approxi-
mately 44 Kbytes of configuration data including the
program for reconfiguration of the ORAs into a shift
register at the end of the BIST sequence for retrieving
BIST results. Therefore, a total of approximately 704
Kbytes of memory is needed to store all sixteen logic
BIST configurations. A single configuration for a given
logic BIST session with a program to reconfigure the
subsequent three BIST configurations requires only 45.5
Kbytes of configuration and program data, giving a fac-
tor of 3.9 reduction in memory storage for four test ses-
sions. A single download that reconfigures all 16 logic
BIST configurations requires 52.4 Kbytes, giving a fac-
tor of 13.5 reduction in memory storage requirements
for the complete set of 16 logic BIST configurations. In
these cases, the program performs the following steps:

1. Execute the BIST sequence for the current BIST
configuration.

2. Reconfigure the ORAs into a shift register at the
end of the BIST sequence.

3. Retrieve the BIST results.
4. Reconfigure the shift register back to ORAs for the

next BIST configuration.
5. Reconfigure BUTs for the next BIST configuration.
6. Repeat steps 1 through 5 until all of the BIST con-

figurations have been executed.

The test time is determined by the total time to
download the BIST configuration and the time for the
processor to execute the steps listed above. At the
maximum download and processor clock frequencies, it
takes 350 milliseconds for a single logic BIST configu-
ration, 1.41 seconds for a test session of four logic BIST
configurations, and a total of 5.6 seconds for the com-
plete set of 16 logic BIST configurations. Using the
processor core for reconfiguration of the four BUT con-
figurations within a given test session, it takes a total of
379 milliseconds per test session, giving a speed-up of
3.7. The complete set of 16 BIST configurations takes a
total 447 milliseconds with processor core control of the
BIST sequence and reconfiguration for all test sessions,
giving an order of magnitude speed-up of 12.6. If we
algorithmically generate the initial BIST configuration
from the processor, then only the program for recon-
figuration and execution of the 16 logic BIST configura-
tions needs to be downloaded. This requires a download
file of only 9.4 Kbytes with a total download and execu-
tion time of 162 milliseconds. This yields a speed-up of
34.9 with a factor of 75 reduction in memory storage for
the complete set of 16 logic BIST configurations.

Table 4 summaries the number of processor clock
cycles required to perform the various functions associ-
ated with reconfiguration and execution of logic BIST.
The number of non-commented lines of C code and the
number of bytes of program memory storage required
for the compile program is also given. In logic BIST of
the AT94K40 (a 48×48 array) there are 1,152 BUTs and
1,104 ORAs in each BIST configuration. Therefore,
BUT reconfiguration requires about 43 cycles per BUT
while reconfiguration of the ORAs into a shift register
requires about 23 cycles per ORA and reconfiguration
back to ORAs after retrieval of the BIST results requires
about 34 cycles per ORA.

A similar reduction in test time is obtained with
routing BIST and BIST for the free RAMs. The three
BIST configurations for the free RAMs were developed
with the processor core performing the TPG function
with only the ORAs implemented in the FPGA core
along with the RAMs and routing for the test patterns
produced by the processor. Table 5 summaries the three
individual BIST configurations as well as a single con-

figuration that combines all three RAM test algorithms
along with partial reconfiguration of the FPGA between
RAM BIST sequences. All of these configurations in-
clude execution of the BIST sequence and retrieval of
BIST results by the processor core along with a com-
munication protocol for transmitting the BIST results to
an external processor for application of diagnostic pro-
cedures. Table 5 gives the number of bytes in the con-
figuration download file which includes FPGA core
configuration data as well as the programs that are
stored in the program memory and executed by the
processor core. The number of processor clock cycles
required to execute the programs is given along with the
total test time, non-commented lines of C source code,
and the number of bytes of program memory storage
required for the compiled program. Downloading and
executing the RAM BIST sequences individually re-
quires 187 milliseconds while a speed-up of about 2.3
times is obtained when all three BIST sequences are
downloaded and executed by the processor core with
partial reconfiguration between BIST sequences in the
combined configuration file. Notice that the number of
processor execution cycles for the combined download
file is greater than the sum of the three individual RAM
BIST configurations due to the additional reconfigura-
tion of the FPGA core by the processor core. The single
combined download file reduces the storage require-
ments for the RAM BIST configurations by a factor of
almost 3.

Table 4. Logic BIST Reconfiguration

Reconfiguration function
Processor
execution

cycles
NCL

Program
memory

bytes
Step 2. ORA to

shift register 25,570 127 764

Step 4. shift reg-
ister to ORA 37,220 102 328

Per BIST
config-
uration

Step 5. BUTs 49,050 119 436
BUTs 53,658 155 691
ORAs 58,194 255 756 Per test

session
TPGs + routing 65,814 482 847

Table 5. RAM BIST Configurations

RAM test
algorithm

Config-
uration
bytes

Processor
execution

cycles

Test
time

(msec)
NCL

Program
memory

bytes
Dual-Port 60,651 72,264 63.5 144 664
March-LR 59,661 76,355 62.7 196 1,192
March-Y 58,815 49,400 60.8 138 646

Combined 65,983 398,091 81.9 383 1,860

The BIST configuration for the shared dual-port data
RAM can be integrated in the combined RAM BIST
configuration for the free RAMs. In this case, the FPGA
core is reconfigured by the processor to the data RAM

BIST architecture after the free RAMs have been tested.
This would include single-port tests of the data RAM
from both the FPGA and processor ports as well as the
dual-port RAM test controlled by the processor. Finally,
the program to generate a March-LR test of the program
memory can be incorporated into the same configura-
tion download file such that all RAM cores are tested in
one continuous sequence. Each of these single-port
RAM test programs are approximately 200 non-
commented lines of C code and require about 1,200
bytes of the program memory when compiled.

9. CONCLUSIONS
We have presented the results of our investigation of

BIST for a commercial generic SoC using the Atmel
AT94K with FPGA core, RAM cores, and a processor
core. Our original intent was to apply the BIST methods
proposed in [1] to this device; specifically to program
the FPGA core to test itself and then use the FPGA core
to test the other cores in the device. The FPGA core
could be configured for BIST of the programmable
logic and routing resources. In addition, the FPGA core
could be configured for BIST of the small RAM cores
dispersed throughout the FPGA. However, the limited
interfaces and access between the FPGA core and the
remaining cores prevented BIST of those cores using
the FPGA core as the primary test resource. Partial
BIST of the dual-port data RAM could be performed by
the FPGA core in the form of a single-port RAM BIST
with background data sequences for pattern sensitivity
and coupling faults. A complete dual-port RAM test
could not be performed without the use of the processor
core. Furthermore, the processor and program memory
cores could not be tested by the FPGA core. While the
basic ideas proposed in [1] are good, the ability to real-
ize the ideas in practice is a function of the interconnect
and accessibility between the FPGA core and the other
cores to be tested. An FPGA core with complete access
to all I/O of a core to be tested can provide BIST re-
sources for that core. Therefore, it is important to
maximize the interconnect between an FPGA core and
any other core to be tested by the FPGA in an SoC im-
plementation.

In our development, the processor core turned out to
be the primary testing resource instead of the FPGA
core. Furthermore, the ability of the processor core to
perform dynamic partial reconfiguration of the FPGA
core leads to more than an order of magnitude im-
provement in the total testing time for the FPGA core
when compared to downloading individual BIST con-
figurations. Only one BIST configuration must be
downloaded into the FPGA along with the program exe-
cuted by the processor for the partial reconfiguration for
subsequent BIST configurations, execution of the BIST
sequence and retrieval of the BIST results. Currently we

use one download for logic BIST, one for each type of
routing BIST test session (repeaters and global cross-
point PIPs), and one download for each type of RAM
core (free RAMs and data/program memory). As a re-
sult, only five BIST configurations need to be
downloaded for complete testing of the FPGA core and
RAM cores to execute a total of 59 BIST configura-
tions. This greatly reduces the amount of storage needed
to hold the BIST configurations for system-level testing.

The most important key to efficient reconfiguration
of the FPGA core by the processor core appears to be a
regular BIST structure that can be algorithmically gen-
erated and reconfigured by the processor core. This in-
cludes all BIST structures implemented in the FPGA
core. Irregular functions, such as the TPG circuitry for
the RAM BIST sequence for example, should be im-
plemented and executed as programs in the processor
core whenever possible.

We are currently exploring the possibility of per-
forming all testing of the FPGA core and RAM cores
with a single processor program for the generation and
reconfiguration of the various BIST configurations. This
will result in further reductions in testing time and
memory storage required for the system-level applica-
tion of BIST for the SoC. In addition, we intend to in-
corporate diagnostic algorithms in the program for on-
chip diagnosis to facilitate fault-tolerant operation of the
FPGA core and RAM cores in SoC.

ACKNOWLEDGEMENTS
The content of the information in this paper does not

necessarily reflect the position or the policy of the fed-
eral government, and no official endorsement should be
inferred.

REFERENCES
[1] M. Abramovici, C. Stroud, and J. Emmert, “Using

Embedded FPGAs for SoC Yield Improvement,”
Proc. ACM/IEEE Design Automation Conf., pp.
713-724, 2002

[2] __, “AT94K Series Field Programmable System
Level Integrated Circuit,” Datasheet, Atmel Corp.,
2001 (available at www.atmel.com)

[3] M. Abramovici and C. Stroud, “BIST-Based Test
and Diagnosis of FPGA Logic Blocks,” IEEE
Trans. on VLSI Systems, Vol. 9, No. 1, pp. 159-172,
2001

[4] C. Stroud, J. Nall, M. Lashinsky and M.
Abramovici, “BIST-Based Diagnosis of FPGA In-
terconnect,” Proc. IEEE Int’l Test Conf., pp. 618-
627, 2002

[5] X. Sun, J. Xu, B. Chan and P. Trouborst, “Novel
Technique for BIST of FPGA Interconnects,” Proc.
IEEE Int’l Test Conf., pp. 795-803, 2000

[6] C. Stroud, J. Harris, S. Garimella and J. Sunwoo,
“BIST Configurations for Atmel FPGAs Using
Macro Generation Language”, Proc. IEEE North
Atlantic Test Workshop, pp. 83-90, 2004

[7] D. Fernandes and I. Harris, “Application of Built-In
Self-Test for Interconnect Testing of FPGAs”,
Proc. IEEE Int’l Test Conf., pp. 1248-1257, 2003

[8] C. Stroud, K. Leach, and T. Slaughter, “BIST for
Xilinx 4000 and Spartan Series FPGAs: A Case
Study”, Proc. IEEE Int’l Test Conf., pp. 1258-1267,
2003

[9] A. van de Goor, G. Gaydadjiev, V.N. Jarmolik and
V.G. Mikitjuk, "March LR: A Test for Realistic
Linked Faults", Proc. IEEE VLSI Test Symposium,
pp. 272-280, 1996

[10] C. Stroud, A Designer’s Guide to Built-In Self-Test.
Kluwer Academic Publishers, Boston MA, 2002.

[11] A. van de Goor, I. Tlili and S. Hamdioui, ”Convert-
ing March Tests for Bit-Oriented Memories into
Tests for Word-Oriented Memories,” Proc. IEEE
Int. Workshop on Memory Technology, Design and
Testing, pp. 46-52, 1998

[12] S, Hamdioui and A.J. van de Goor, “Efficient Tests
for Realistic Faults in Dual-Port SRAMs” IEEE
Trans. on Computers, Vol. 51, No. 5, pp. 460-473,
2002

[13] A. van de Goor and S. Hamdioui, “Fault Models
and Tests for Two Port Memories,” Proc. IEEE
VLSI Test Symp., pp. 401-410, 1998

[14] L. Chen and S. Dey, “Software-Based Self-Testing
Methodology for Processor Cores,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, Vol. 20, No. 3, pp. 369-380, March 2001

[15] A. Krstic, L. Chen, W-C. Lai, K-T Cheng, and S.
Dey, “Embedded Software-Based Self-Test for
Programmable Core-Based Designs,” IEEE Design
& Test of Computers, pp. 18-27, Jul-Aug, 2002

[16] D. Brahme and J. Abraham, “Functional Testing of
Microprocessors,” IEEE Trans. on Computers, Vol.
33, No. 6, pp. 475-484, June 1984

[17] R. Rajsuman, “Testing a System-on-Chip with Em-
bedded Microprocessor,” Proc. IEEE Int’l Test
Conf., pp. 499-508, 2003

[18] S. Pontarelli, G. Cardarilli, A. Malvoni, M. Ottavi,
M. Re, and A. Salsano, “System-on-Chip Oriented
Fault-Tolerant Sequential Systems Implementation
Methodology”, Proc. IEEE Int’l Symp. on Defect
and Fault Tolerance in VLSI Systems, pp. 455-460,
2001

