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ABSTRACT - We describe the development of Built-In 
Self-Test (BIST) for a generic SoC consisting of a Field 
Programmable Gate Array (FPGA) core for application 
specific logic along with a processor and several mem-
ory cores. Our target device was the Atmel AT94K se-
ries System-on-Chip (SoC), also known as a Field Pro-
grammable System Level Integrated Circuit (FPSLIC). 
The original goal for this project was to develop BIST 
configurations to completely test the programmable 
logic and routing resources of the FPGA core and then 
to use the FPGA core to test the other cores. We found 
that the FPGA can provide only limited testing of the 
some memory cores and even less testing of the proces-
sor. The processor, on the other hand, provides more 
effective testing of some memory cores than the FPGA 
core. In addition, the ability of the processor to write the 
FPGA configuration memory provides an improved and 
more efficient method of testing the FPGA core. As a 
result, the processor core was the primary testing re-
source instead of the FPGA.1 

1. INTRODUCTION 
A new approach to Built-In Self-Test (BIST) for 

System-on-Chip (SoC) devices that contain one or more 
Field Programmable Gate Array (FPGA) cores was pro-
posed in [1]. The basic idea is to use BIST approaches 
developed for FPGAs to first completely test and diag-
nose the FPGA core found in many generic SoC archi-
tectures. These FPGA BIST approaches reprogram the 
FPGA logic and routing resources with BIST circuitry 
to allow the FPGA to test itself while off-line without 
the need for external test equipment or dedicated cir-
cuitry for BIST [1]. Once tested and diagnosed, the 
fault-free portion of the FPGA core can then be used to 
test and diagnose other cores in the SoC. As proposed in 
[1], the FPGA core provides the primary resource for 
testing the SoC, complete with the advantages associ-
ated with BIST for FPGAs, reducing the need for ex-
pensive external test equipment and the need for dedi-
cated BIST or other design-for-testability (DFT) cir-
cuitry. While this appears to be a potentially good ap-
proach to SoC testing, it has not been applied to a pro-
duction SoC in practice. As a result, we set out to apply 
this idea to a generic, commercial SoC. 

                                                 
1 This work was sponsored by the National Security Agency 

under contract H98230-04-C-1177 and by the Dept. of the 
Army, SMDC, under grant W9113M-04-1-0002. 

The Atmel AT94K series Field Programmable Sys-
tem Level Integrated Circuit (FPSLIC) is a generic SoC 
architecture that consists of three main types of core 
functions: an 8-bit processor core, an FPGA core, and 
different types of Random Access Memory (RAM) 
cores [2]. Due to the large FPGA core, this SoC archi-
tecture appears to be a good candidate for the applica-
tion of the BIST approach proposed in [1]. During the 
course of our development, we found that a number of 
practical architectural issues prevented the direct appli-
cation of the SoC testing approach as originally pro-
posed. For example, the limited interfaces between the 
FPGA core and the other cores significantly restrict the 
ability of the FPGA core to test the other cores. How-
ever, the architecture provides a number of features and 
capabilities that offer unique opportunities for SoC test-
ing in a different manner than that proposed in [1]. For 
example, the ability of the processor core to write the 
FPGA configuration memory allows the application of 
BIST for the FPGA core without the need for time-
consuming downloads of the BIST configurations 
needed to test the FPGA core. 

In this paper, we present our investigation of the ap-
plication of the BIST approach for SoCs proposed in [1] 
to the Atmel AT94K series SoC. We describe obstacles 
that prevent direct application of the approach as origi-
nally proposed as well as architectural features and ca-
pabilities that lead to new methods for testing SoCs con-
taining FPGA cores. We begin in Section 2 with an 
overview of the BIST approach proposed in [1] fol-
lowed by an overview of the AT94K series SoC archi-
tecture in Section 3. In Section 4 we describe the archi-
tectural limitations that prevent the complete application 
of the BIST approach proposed in [1] and describe those 
portions of the SoC that can be tested with that BIST 
approach. We then describe the approaches we used to 
test the FPGA core, the various RAM cores, and the 
processor core in Sections 5, 6, and 7 respectively. In 
Section 8, we show the improvements obtained when 
testing the FPGA core via the processor compared to the 
more traditional approaches to BIST for FPGAs and we 
conclude the paper in Section 9. 

2. PREVIOUSLY PROPOSED BIST FOR SOCS 
The basic idea of the SoC BIST proposed in [1] is to 

test the FPGA core first and then use the FPGA core to 
test other cores. The underlying idea in BIST for FPGAs 
is to configure some of the programmable logic blocks 
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(PLBs) as Test Pattern Generators (TPGs) and as Output 
Response Analyzers (ORAs). These are then used to 
detect faults in PLBs under test (BUTs) in logic BIST or 
wires under test (WUTs) in routing BIST. 

Typically, in logic BIST, the BUTs and ORAs are 
arranged in alternating columns (or rows) and multiple 
identical TPGs are used to drive the alternating columns 
(or rows) of BUTs [3]. The output responses of the 
identically programmed BUTs are compared by ORAs 
in neighboring columns (or rows). During a given test 
session, the BUTs are repeatedly reconfigured in their 
various modes of operation until they are completely 
tested. During the next test session, this architecture is 
flipped and the roles of the PLBs are then reversed such 
that those previously configured as TPGs and ORAs 
become BUTs and vice versa. The PLBs can be tested 
in only two test sessions when at least half the PLBs are 
configured as BUTs during a given test session. 

Two types of routing BIST approaches have proven 
to be effective in testing the programmable interconnect 
resources in FPGAs. The first is a comparison-based 
approach in which the TPG drives exhaustive test pat-
terns over two sets of WUTs that are compared at the 
other end by a comparison-based ORA [4]. The second 
approach is parity-based where the TPG sources ex-
haustive test patterns over a set of WUTs and produces 
a parity-bit that is sent to the ORA [5]. The ORA gener-
ates parity over the data observed on the WUTs and 
compares the generated parity-bit with that sent by the 
TPG. While both approaches have been shown to be 
effective in detecting faults, the comparison-based ap-
proach was extended to diagnosis of faults in the pro-
grammable interconnect network [4]. 

Once the FPGA core is tested, it can be configured 
to test other cores [1]. A common core could be a RAM 
where the FPGA is programmed with the TPG and 
ORA functions to perform RAM BIST. The TPG pro-
duces a March test while the ORA compares the output 
responses of the RAM with expected output responses 
produced by the TPG. An important underlying assump-
tion in the approach proposed in [1] is that the FPGA 
has complete access to the RAM inputs/outputs. Simi-
larly, the FPGA could be used to test other cores that 
would normally be tested by external means. While it 
was assumed that these cores may or may not have em-
bedded design-for-testability circuitry such as scan-
chains, it was assumed that the design-for-testability 
circuitry and the inputs/outputs of the core to be tested 
were accessible by the FPGA core [1]. Once the other 
cores are tested, the FPGA can be reconfigured with the 
desired system function such that there is no BIST area 
or performance penalty other than the memory needed 
to store the BIST configurations needed to test the 
FPGA and other cores. 

3. OVERVIEW OF AT94K SERIES SOC 
The AT94K series SoC architecture (illustrated in 

Figure 1) consists of three major components: 1) an 
FPGA core, 2) three types of SRAM cores, and 3) an 8-
bit Advanced Virtual RISC (AVR) processor core [2]. 
The processor core includes a variety of peripheral units 
such as 16-bit timer/counters and Universal Asynchro-
nous Receiver-Transmitters (UARTs). The thee types of 
SRAM cores include: 1) small 128-bit RAMs dispersed 
throughout the FPGA core, 2) a 20-Kbyte to 32-Kbyte 
processor program memory, and 3) a 4-Kbyte to 16-
Kbyte dual-port data RAM shared between the FPGA 
and processor cores with one port interfacing to the 
FPGA and the other to the processor. 

The total RAM capacity between the program and 
data memories is 36-Kbytes [2]. The variation in the 
sizes of each RAM results from a 12-Kbyte RAM parti-
tion that can be swapped between program and data 
memories in 4-Kbyte pieces. While the FPGA can read 
all of the address locations in both program and data 
memories, it can only write to the data memory portion 
of the complete 36-Kbyte RAM space. The FPGA inter-
face to the data and program memories consists of a 16-
bit address bus, an 8-bit write data bus, an 8-bit read 
data bus, and a write enable. The processor core, on the 
other hand, can write and read the entire RAM space 
with the exception of a small portion of the data RAM 
that can only be accessed by FPGA. The processor in-
terface to the data and program memories consists of a 
16-bit address bus, an 8-bit bi-directional data bus, and 
control lines for read and write enables. 

The small RAM cores (called free RAMs in Atmel 
terminology) are distributed evenly through the FPGA 
core with one RAM for every 4×4 array of PLBs [2]. 
Each free RAM is a 32×4-bit memory and can operate 
as a synchronous or asynchronous single-port or dual-
port RAM. It should be noted that the dual-port RAM 
mode simply has separate write and read ports and is not 
a true dual-port RAM. The single-port RAM mode has a 
single address bus and a bi-directional data bus.  

=RAM =PLB =repeater 

Figure 1. AT94K series Soc architecture 
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The interface between the processor and FPGA 
cores (excluding the shared data RAM) consists of six-
teen decoded select lines from the processor to the 
FPGA, an 8-bit bi-directional data bus, a read enable 
and a write enable from the processor to the FPGA, and 
sixteen interrupt lines from the FPGA to the processor 
[2]. In addition, the processor core can write the FPGA 
core configuration memory such that the FPGA can be 
dynamically reconfigured (fully or partially) by the 
processor core during normal system operation. This 
configuration memory access is facilitated through a 24-
bit address bus and an 8-bit data bus. The address bus is 
partitioned into three 8-bit components (called FPGAX, 
FPGAY, and FPGAZ) that specify the address of the 
target configuration memory byte of the FPGA to be 
reconfigured. The FPGA is PLB addressable where the 
X and Y address values correspond to the horizontal and 
vertical location, respectively, of the PLB to be recon-
figured. The Z address corresponds to specific logic and 
routing resources within the specified PLB. 

The FPGA core consists of an Atmel AT40K series 
FPGA comprised of an N×N array of PLBs [2]. As illus-
trated in Figure 2, each PLB consists of two 3-input 
look-up tables (LUTs), a set/reset D flip-flop, a number 
of multiplexers, and an AND gate to provide a variety 
of logic functions. This PLB is small compared to most 
other FPGAs, only about one-fourth the size of the 
ORCA 2C or Xilinx Virtex/Spartan II PLBs. This small 
PLB size presents some interesting problems in BIST 
implementations, as will be discussed in Section 5. 

The X-outputs and Y-outputs of each PLB connect 
diagonally and orthogonally via dedicated local routing 
resources to its neighboring PLBs, as illustrated in Fig-
ure 3a [2]. In addition, there are five vertical and five 
horizontal global busing planes associated with each 
PLB as shown in Figure 3b. Each busing plane consists 
of two outside wire segments (referred to as express 
wires) and a middle wire segment. The four inputs to 
the PLB as well as the output from the PLB can connect 
to the middle wire segment of any of the global busing 
planes associated with the PLB. The X and Y inputs to 

the PLB (shown in Figure 2) can be selected via non-
decoded multiplexers from any of their respective four 
direct local connections or from any of the five vertical 
or five horizontal global connections. The W and Z in-
puts to the PLB can only be selected from any of the 
five vertical or five horizontal global connections. Pro-
grammable interconnect points (PIPs) of the cross-point 
type are located at all intersections of the vertical and 
horizontal global busses. For every 4×4 array of PLBs, 
buffered bus repeaters in the five global busing planes 
prevent signal degradation in lengthy and/or heavily 
loaded nets. The repeaters also provide all possible 
combinations of connections between express and mid-
dle wire segments connected to the repeater as illus-
trated in Figure 3c. 

4. APPLYING SOC BIST TO AT94K SERIES SOC 
In our attempt to apply the BIST ideas proposed in 

[1] to the Atmel AT94K series SoC, we found that some 
of the ideas could be applied but many could not. The 
cores that can be tested as proposed include the FPGA 
core, the free RAM cores, but only a single port of the 
shared data RAM. The cores that cannot be tested as 
proposed in [1] include the dual-port of the data RAM, 
the program memory, and the processor core. The in-
ability to test these cores from the FPGA is primarily 
due to the limited interfaces and interconnect access 
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to/from the FPGA core. The processor core, on the other 
hand, has better access to most other cores than the 
FPGA core. Most significant is the processor core write 
access to the FPGA configuration memory which, as 
will be shown, allows the processor core to provide the 
primary test access and control resource for BIST of the 
SoC. The FPGA core becomes a secondary, although 
very important, testing resource since it can be easily 
reconfigured and controlled by the processor. 

5. FPGA CORE BIST 
The BIST for the programmable logic and routing 

resources in the FPGA core is similar to the BIST de-
scribed in [1]. Due to the small size of the PLBs, a num-
ber of modifications were required to both logic and 
routing BIST as will be discussed. In logic BIST, a 5-bit 
binary up-counter is used for each TPG while compari-
son-based ORAs are used for their fault detection effec-
tiveness and good diagnostic resolution [3]. The test 
patterns are routed from the TPGs to the BUTs via 
global interconnected resources while the BUT-to-ORA 
connections are made using local routing resources. 
However, the local routing architecture of the FPGA 
and the PLB architecture allow only a single X output 
and a single Y output from the adjacent BUTs to be 
observed by the ORA. Therefore, an alternating routing 
scheme was devised which allows for complete testing 
of the PLBs. The two routing schemes shown in Figure 
4 are alternated during successive test configurations in 
order to provide observability of both X and Y outputs 
from each PLB. The BIST architecture is column-based 
due to bank clocks and set/resets in the array of PLBs. 

Our first set of logic BIST configurations for the 
FPGA core were developed using Atmel’s Macro Gen-
eration Language (MGL) [6]. The MGL provides a 
method of creating design-specific implementations in 
the FPGA through the use of dynamic macros. The 
MGL code can be utilized to create functions in which 
logical specification and physical layout of dynamic 
macros and their respective interconnect can be speci-
fied in a programming-like environment. However, the 
dynamic macros provide the user with limited control of 
the configuration bits associated with the PLBs [6]. As a 

result, five BIST configurations were required in each 
test session in order to obtain 98.8% single stuck-at gate 
level fault coverage of the PLBs.  

We determined through fault simulations that only 
three BIST configurations are needed to obtain 100% 
fault coverage only if complete control of the configura-
tion bits for the BUTs is available and all outputs of the 
BUTs are simultaneously observable (including X and 
Y outputs as well as the L output to global routing). 
However, with only complete control of the configura-
tion bits while observing only the X and Y outputs of 
the BUTs, four BIST configurations of the BUTs are 
required to obtain a fault coverage of 99.7%. With these 
four configurations, only one potentially detected fault 
is left and this fault is detected during routing BIST 
such that 100% fault coverage is obtained with the 
complete set of BIST configurations. The individual 
(FCIND) and cumulative (FCCUM) fault coverage ob-
tained with these four BIST configurations are summa-
rized in Table 1 along with individual and cumulative 
fault coverage obtained for the five BIST configurations 
obtained with MGL and the theoretical best-case three 
BIST configurations assuming complete control of con-
figurations bits and observability of all PLB outputs. 

Table 1. Logic BIST configurations fault coverage 
MGL [6] X-Y Outputs Theoretical BUT 

Config FCIND FCCUM FCIND FCCUM FCIND FCCUM

1 59.6% 59.6% 59.6% 59.6% 62.3% 62.3%
2 53.6% 85.5% 50.6% 89.8% 59.6% 95.8%
3 49.1% 91.3% 59.5% 97.9% 57.5% 100%
4 43.4% 95.5% 35.5% 99.7%   
5 31.3% 97.9%     

Complete control of the configuration bits for the 
BUTs is available through the processor core access to 
the FPGA configuration memory. As a result, the dy-
namic partial reconfiguration of the FPGA core by the 
processor not only reduces the number of logic BIST 
configurations but also provides higher fault coverage. 
Furthermore, it was observed that for the BUTs located 
on the edge of the array, the fault coverage was much 
lower (only about 83%) than that of the middle BUTs 
since both X and Y outputs in the BUTs along the edge 
of the array are not observable in all BIST configura-
tions. By utilizing the dynamic partial reconfiguration of 
the FPGA by the processor, the BUT-to-ORA connec-
tions at the edges of the array can be changed during 
each BUT configuration to obtain the same fault cover-
age as in the middle of the array. This results in minimal 
increase in testing time since only the BUT-to-ORA 
connections along the edges of the array need to be re-
configured and the FPGA core can be partially recon-
figured without affecting the flip-flop values present in 
the PLBs. An alternative technique is to rotate the floor 

a) Test Session 1 b) Test Session 2
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plan of the two test sessions illustrated in Figure 4 by 
90° such that the BIST architecture is now row-based 
and to apply all four test sessions. While this doubles 
the total number of logic BIST configurations, it not 
only overcomes the lower fault coverage along the edge 
of the array but also provides nearly complete testing of 
all local routing resources during logic BIST. In addi-
tion, the four test sessions provide improved multiple 
fault detection capabilities and diagnostic resolution [3].  

Dynamic partial reconfiguration overcomes another 
problem associated with the small PLB size. The PLB 
does not have sufficient logic resources to implement a 
comparison-based ORA with a shift register for retriev-
ing the BIST results at the end of the BIST sequence. 
This can be seen in Figure 5 where there is a conflict for 
the Y input to the PLB by the BUT output and the shift 
register input. In addition, the contents of the PLB flip-
flop cannot be read by the processor core. Therefore, we 
use partial reconfiguration via the processor core to re-
configure the ORAs into a shift register chain in order to 
retrieve the BIST results and diagnose the location of 
the faulty PLB(s) at the end of each BIST configuration. 

The BIST for the programmable interconnect re-
quires more configurations than that for the logic BIST 
due to the fact that most of the area in FPGAs is con-
sumed by the routing resources and their configuration 
memory bits [7]. A modified version of the parity-based 
routing BIST approach in [5] was found to be more effi-
cient in terms of the total number of BIST configura-
tions than the comparison-based BIST approach in [4] 
due to the limited ORA implementations that can be 
obtained with the small PLB. In this modified architec-
ture, a 2-bit binary counter is used in conjunction with 
even or odd parity generators to provide test patterns to 
the set of WUTs with the generated parity bit used as an 
additional test pattern along with the 2-bit count value. 
The ORA consists of the corresponding parity check 
circuit as illustrated in Figure 6. The TPG, ORA and 
WUTs are confined to as small an area as possible for 
the particular routing resources under test. This area is 
called a self-test area (STAR) [4]. The FPGA is popu-
lated with multiple STARs that execute their BIST se-
quences concurrently. Diagnostic resolution obtained 
from a failing ORA indication is to that STAR [4]. 

The local routing resources associated with each 
PLB consist of the X and Y direct connections (Figure 

3a) and four PLB input multiplexers with up to fourteen 
connections: five from the horizontal global buses, five 
from the vertical global busses, and four from the direct 
connections. These local routing resources are nearly 
completely tested during the four logic BIST sessions. 
The exception is the direct diagonal X connections 
which require four additional routing BIST configura-
tions. 

Within the global routing resources there are hori-
zontal and vertical repeaters placed throughout the array 
for every four PLBs. Each repeater consists of four 3-
input non-decoded multiplexers as shown in Figure 3c. 
Eight BIST configurations are used to completely test 
the vertical repeaters along with another eight BIST 
configurations for the horizontal repeaters. Two 
examples of these repeater tests are illustrated in Figure 
7 where alternating up-count/even-parity and down-
count/odd-parity TPGs drive alternating sets of WUTs 
in order to detect bridging faults and stuck-on faults in 
some of the PIPs in the repeater while other PIPs are 
being tested for stuck-off faults. As the eight BIST con-
figurations are applied, all multiplexer PIPs in the re-
peater cell are tested for stuck-on and stuck-off faults. 

Eight configurations are used to test the cross-point 
PIPs interconnecting a given set of global express bus-
ses for both stuck-off and stuck-on faults. A simplified 
example of the cross-point PIP BIST configurations is 
illustrated in Figure 8. During subsequent BIST con-
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figurations, the on cross-point PIPs that are being tested 
for stuck-off faults would shift down through the rows 
until all cross-point PIPs are tested. Opposite logic val-
ues are driven from the neighboring STAR on one bus 
per BIST configuration in order to test the PIPs for 
stuck-on faults. Since there are two sets of express bus-
ses, a total of sixteen BIST configurations are used. 

A total of 36 routing BIST configurations are re-
quired to test all of the programmable routing resources, 
not including those local routing resources tested by the 
16 logic BIST configurations. These are summarized in 
Table 2. The STAR size is given in terms of the size of 
the PLB array needed to implement the BIST circuitry 
and, as a result, the diagnostic resolution associated with 
a failing routing BIST ORA indication. For better diag-
nostic resolution, additional diagnostic BIST configura-
tions can be developed and applied in order to locate a 
faulty wire segment or PIP [4]. As in the case of logic 
BIST, dynamic partial reconfiguration from the proces-
sor core is used to reconfigure the ORAs into a shift 
register for BIST results retrieval. Note that the routing 
resources associated with the free RAMs in the array are 
tested as a part of the RAM BIST since these routing 
resources are dedicated for access to/from the RAMs. 

Table 2. Routing BIST Configurations 
Routing Resource # Configs STAR size 

direct X connections 4 4×4 
vertical repeater cells  8 1×16 

horizontal repeater cells 8 16×1 
express bus cross-points 16 8×8 

Total Routing BIST  36  

6. RAM CORE BIST 
The free RAMs dispersed over the entire array of the 

FPGA core and located in every 4×4 array of PLBs have 
all inputs/outputs accessible by the PLBs and routing 
resources of the FPGA core. Therefore, these RAMs can 
be tested by the FPGA core with PLBs configured to 
function as TPGs and ORAs as proposed in [1]. Except 
for those RAMs in the rightmost column of the array, all 
free RAMs can operate as either a single-port or dual-
port RAM in synchronous or asynchronous modes. The 
RAMs along the rightmost column can only operate in 
single-port RAM mode. A total of three RAM BIST 
configurations are required to completely test these 
RAMs and all of the RAMs are tested in parallel. 

The RAMs are tested in their synchronous dual-port 
mode using a test algorithm similar to the dual-port 
RAM test described in [8]. The March-LR algorithm [9] 
is used to test the RAMs in synchronous single-port 
mode and the March Y algorithm as described in [10] is 
used to test the asynchronous single-port mode. Back-
ground data sequences (BDS) are used to detect 

neighborhood pattern sensitive and intra-word coupling 
faults [11]. The three RAM BIST configurations are 
summarized in Table 2 along with individual and cumu-
lative stuck-at fault coverage obtained via fault simula-
tion. The number of TPG and ORA PLBs used in each 
BIST configuration is also included in the table. 

Table 3. RAM BIST Configurations 
RAM/ 
Mode 

Test al-
gorithm FCIND FCCUM TPG 

PLBs 
ORA 
PLBs 

Sync 
Dual-Port DPR test 75.4% 75.4% 66 N×(N-2)×8

Sync 
Single-Port

March-LR 
w/BDS 81.8% 99.8% 123 N×(N-1)×8

Async 
Single-Port

March-Y 
w/o BDS 75.6% 100% 18 N×(N-1)×8

Data RAM March-LR 
w/BDS - - 209 16 

N = number of free RAMs in one dimension of array 

When testing the dual-port mode, the RAM BIST 
architecture employed (illustrated in Figure 10a) is simi-
lar to the one used for logic BIST. A 2-PLB ORA, simi-
lar to the one in Figure 5, compares bit outputs of two 
adjacent RAMs and latches any mismatches. When test-
ing the single-port modes, the TPG also generates the 
expected results and the ORA compares the expected 
results with the output response of a single RAM (Fig-
ure 10b). The active-low output enable (OEN) for the 
RAM causes the ORA, illustrated in Figure 11, to com-
pare the expected results with the data from the RAM 
when the output enable is asserted. When the output 
enable is not asserted, the data from the TPG is written 
into the RAM with the ORA comparing the test data 

Figure 10. RAM BIST architectures 
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from the TPG with the data being written into the RAM. 
Both types of ORAs (dual-port and single-port) are con-
nected to form a shift register in order to retrieve the 
BIST results after each test sequence. Since the PLB 
array utilization is only about 50% (compared to over 
98% in logic BIST) the shift register for retrieving BIST 
results is incorporated in the ORA such that there is no 
need for the processor core to reconfigure the ORAs 
into a shift register at the end of the BIST sequence.  

An alternative to implementing the TPG in PLBs of 
the FPGA core is to implement the TPG functionality as 
a program executed by the processor core. This is par-
ticularly important when using the processor core to 
partially reconfigure the FPGA core for the various 
RAM BIST sequences. The RAM and ORA portion of 
the three free RAM BIST architectures given in Table 3 
and illustrated in Figure 10 are very similar and also 
very regular, much like the logic BIST architecture. 
However, the TPG implementations are not similar or 
regular, as indicated by the difference in the number of 
PLBs used to implement the RAM test algorithms in 
Table 3. For more efficient partial reconfiguration of the 
RAM BIST sequences by the processor core, it is im-
portant to maintain regular structures for algorithmic 
generation of the configuration by the processor core. 
This can be accomplished by implementing the TPG 
functions as programs executed from the processor, 
leaving only the RAMs and ORAs in the FPGA core. 

The data RAM core shared by both processor and 
FPGA cores is a true dual-port RAM with each core 
having access to one port. As a result, the dual-port data 
RAM cannot be tested by the FPGA core alone; the 
FPGA core can only perform a single-port RAM test. 
Therefore, the strategy used to test the dual-port data 
RAM is as described in [12]. First the single-port tests 
are applied from the two ports separately to test port-
related faults as well as some cell-related faults. The 
March-LR test algorithm [9] with background data se-
quences [11] is applied from both sides in single-port 
mode. When testing from the FPGA core, the TPG can 
be implemented inside the FPGA core along with com-
parison-based ORAs to detect mismatches between the 
output responses from the RAM and the expected re-
sults produced by the TPG. As noted in Table 3, this 
approach requires 209 PLBs for the TPG and 16 PLBs 
for the ORAs. An alternative when testing from the 
FPGA core is to implement most of the TPG functional-
ity as a program to be executed by the processor core 
and applied to the data RAM via the processor-FPGA 
interface. This reduces the number of PLBs required for 
the TPG to 30 PLBs. 

When testing the other port from the processor core, 
the TPG (March-LR with background data sequences) 
and ORA functions are implemented as a program exe-

cuted in the processor core. If the shared data RAM 
passes both single-port tests, then the dual-port opera-
tion is tested with the March s2pf- and March d2pf- 
applied from both ports [12][13]. In this case, both the 
processor and FPGA cores are used interactively to per-
form the dual-port RAM test under the control of the 
processor core. Hence, the alternative FPGA port BIST 
implementation, where most of the TPG is implemented 
as a program in the processor core, is used in order to 
allow the processor core to maintain control over the 
dual-port RAM BIST sequence. In addition, both the 
processor and FPGA cores are driven by the same clock 
to ensure simultaneous access of memory locations. 

The program memory is accessible only by the proc-
essor core and, therefore, cannot be tested by the FPGA 
core. The program memory is tested by applying 
March-LR single-port tests from the processor core with 
the TPG and ORA functions implemented as a program 
and executed by the processor. The portion of the pro-
gram memory where the RAM test program is not 
stored is first tested. The RAM test program is then re-
located to facilitate testing the remaining part of the 
program memory.  

7. PROCESSOR CORE BIST 
Since the processor core is an important resource for 

testing the other cores, it is critical that the processor 
core be tested, and probably should be tested first [17]. 
It was suggested in [1] that the FPGA core could serve 
as TPG and ORA functions for other cores besides 
RAMs. For example, if a core were to incorporate scan 
chains, the FPGA could be configured to provide the 
circuitry necessary to perform scan-based BIST on that 
core. On the other hand, if the core did not contain scan 
chains or other design-for-testability circuitry, the 
FPGA core could be used to provide non-intrusive TPG 
and ORA functions such as pseudorandom test patterns 
and signature analysis, respectively. This latter approach 
assumes adequate access of the core inputs/outputs to 
facilitate sufficient controllability and observability of 
the core for adequate fault coverage.  

In the case of the processor core, there are no scan 
chains that we know of and there is only limited and 
insufficient access to the processor inputs/outputs from 
the FPGA core. Since this is a programmable processor 
core, we are able to use the software-based self-testing 
techniques that have been used for other micro-
processors, such as those proposed in [14-17]. The ap-
proaches described in [14] and [15] seem to be based on 
detailed structural knowledge of the target processor to 
facilitate high fault coverage in those processors. We 
are limited in knowledge to the high level architectural 
information given in the datasheets and additional in-
formation that can be derived from the instruction set 



  

and descriptions of the various registers and units within 
the processor core [2]. Therefore, we choose to use a 
more traditional functional testing approach to exercise 
the processor core and its various constituents as in [16] 
and [17]. As opposed to providing a test circuitry re-
source, the FPGA core in this case is only used as a 
routing resource to test the interfaces between the cores. 

8. IMPROVEMENTS TO FPGA AND SOC BIST 
In no previous work in BIST for FPGAs, such as 

[3]-[8], has an embedded processor core been present 
that can write the FPGA configuration memory to util-
ize when implementing BIST methods for FPGAs and 
FPGA cores. The first prior work in utilizing the proces-
sor core to test the FPGA core was described in [18]. 
That approach also used the AT94K series SoC but only 
tests the two LUTs in the PLBs. The LUTs are tested 
one PLB at a time, rather than concurrently, and the 
processor seems to be used for TPG and ORA functions. 

When utilizing the processor core for dynamic par-
tial reconfiguration of the FPGA core, only one BIST 
configuration needs to be downloaded along with a pro-
gram to be executed by the processor core for the recon-
figuration of subsequent BIST configurations. This pro-
vides an improvement to total test time when compared 
to downloading individual BIST configurations. The 
download time dominates the total testing time since the 
configuration clock runs at a much lower frequency (1 
MHz) compared to the processor clock frequency (25 
MHz). In addition, the total memory required to store 
BIST configurations is reduced. We should also note 
that we have performed timing analysis on all of our 
BIST configurations and all are capable of maximum 
clock frequencies greater than the specified 25 MHz 
maximum processor clock frequency. 

To illustrate the reduction in total test time and BIST 
configuration storage requirements, we begin with logic 
BIST. Each of the four BIST configurations associated 
with each of the four test sessions contains approxi-
mately 44 Kbytes of configuration data including the 
program for reconfiguration of the ORAs into a shift 
register at the end of the BIST sequence for retrieving 
BIST results. Therefore, a total of approximately 704 
Kbytes of memory is needed to store all sixteen logic 
BIST configurations. A single configuration for a given 
logic BIST session with a program to reconfigure the 
subsequent three BIST configurations requires only 45.5 
Kbytes of configuration and program data, giving a fac-
tor of 3.9 reduction in memory storage for four test ses-
sions. A single download that reconfigures all 16 logic 
BIST configurations requires 52.4 Kbytes, giving a fac-
tor of 13.5 reduction in memory storage requirements 
for the complete set of 16 logic BIST configurations. In 
these cases, the program performs the following steps: 

1. Execute the BIST sequence for the current BIST 
configuration.  

2. Reconfigure the ORAs into a shift register at the 
end of the BIST sequence. 

3. Retrieve the BIST results. 
4. Reconfigure the shift register back to ORAs for the 

next BIST configuration. 
5. Reconfigure BUTs for the next BIST configuration. 
6. Repeat steps 1 through 5 until all of the BIST con-

figurations have been executed. 

The test time is determined by the total time to 
download the BIST configuration and the time for the 
processor to execute the steps listed above. At the 
maximum download and processor clock frequencies, it 
takes 350 milliseconds for a single logic BIST configu-
ration, 1.41 seconds for a test session of four logic BIST 
configurations, and a total of 5.6 seconds for the com-
plete set of 16 logic BIST configurations. Using the 
processor core for reconfiguration of the four BUT con-
figurations within a given test session, it takes a total of 
379 milliseconds per test session, giving a speed-up of 
3.7. The complete set of 16 BIST configurations takes a 
total 447 milliseconds with processor core control of the 
BIST sequence and reconfiguration for all test sessions, 
giving an order of magnitude speed-up of 12.6. If we 
algorithmically generate the initial BIST configuration 
from the processor, then only the program for recon-
figuration and execution of the 16 logic BIST configura-
tions needs to be downloaded. This requires a download 
file of only 9.4 Kbytes with a total download and execu-
tion time of 162 milliseconds. This yields a speed-up of 
34.9 with a factor of 75 reduction in memory storage for 
the complete set of 16 logic BIST configurations. 

Table 4 summaries the number of processor clock 
cycles required to perform the various functions associ-
ated with reconfiguration and execution of logic BIST. 
The number of non-commented lines of C code and the 
number of bytes of program memory storage required 
for the compile program is also given. In logic BIST of 
the AT94K40 (a 48×48 array) there are 1,152 BUTs and 
1,104 ORAs in each BIST configuration. Therefore, 
BUT reconfiguration requires about 43 cycles per BUT 
while reconfiguration of the ORAs into a shift register 
requires about 23 cycles per ORA and reconfiguration 
back to ORAs after retrieval of the BIST results requires 
about 34 cycles per ORA. 

A similar reduction in test time is obtained with 
routing BIST and BIST for the free RAMs. The three 
BIST configurations for the free RAMs were developed 
with the processor core performing the TPG function 
with only the ORAs implemented in the FPGA core 
along with the RAMs and routing for the test patterns 
produced by the processor. Table 5 summaries the three 
individual BIST configurations as well as a single con-



  

figuration that combines all three RAM test algorithms 
along with partial reconfiguration of the FPGA between 
RAM BIST sequences. All of these configurations in-
clude execution of the BIST sequence and retrieval of 
BIST results by the processor core along with a com-
munication protocol for transmitting the BIST results to 
an external processor for application of diagnostic pro-
cedures. Table 5 gives the number of bytes in the con-
figuration download file which includes FPGA core 
configuration data as well as the programs that are 
stored in the program memory and executed by the 
processor core. The number of processor clock cycles 
required to execute the programs is given along with the 
total test time, non-commented lines of C source code, 
and the number of bytes of program memory storage 
required for the compiled program. Downloading and 
executing the RAM BIST sequences individually re-
quires 187 milliseconds while a speed-up of about 2.3 
times is obtained when all three BIST sequences are 
downloaded and executed by the processor core with 
partial reconfiguration between BIST sequences in the 
combined configuration file. Notice that the number of 
processor execution cycles for the combined download 
file is greater than the sum of the three individual RAM 
BIST configurations due to the additional reconfigura-
tion of the FPGA core by the processor core. The single 
combined download file reduces the storage require-
ments for the RAM BIST configurations by a factor of 
almost 3. 

Table 4. Logic BIST Reconfiguration 

Reconfiguration function 
Processor 
execution 

cycles 
NCL

Program 
memory 

bytes 
Step 2. ORA to 

shift register 25,570 127 764 

Step 4. shift reg-
ister to ORA 37,220 102 328 

Per BIST 
config-
uration 

Step 5. BUTs 49,050 119 436 
BUTs 53,658 155 691 
ORAs 58,194 255 756 Per test 

session 
TPGs + routing 65,814 482 847 

Table 5. RAM BIST Configurations 

RAM test 
algorithm 

Config-
uration 
bytes 

Processor 
execution 

cycles 

Test 
time 

(msec) 
NCL

Program 
memory 

bytes 
Dual-Port 60,651 72,264 63.5 144 664 
March-LR 59,661 76,355 62.7 196 1,192 
March-Y 58,815 49,400 60.8 138 646 

Combined 65,983 398,091 81.9 383 1,860 

The BIST configuration for the shared dual-port data 
RAM can be integrated in the combined RAM BIST 
configuration for the free RAMs. In this case, the FPGA 
core is reconfigured by the processor to the data RAM 

BIST architecture after the free RAMs have been tested. 
This would include single-port tests of the data RAM 
from both the FPGA and processor ports as well as the 
dual-port RAM test controlled by the processor. Finally, 
the program to generate a March-LR test of the program 
memory can be incorporated into the same configura-
tion download file such that all RAM cores are tested in 
one continuous sequence. Each of these single-port 
RAM test programs are approximately 200 non-
commented lines of C code and require about 1,200 
bytes of the program memory when compiled. 

9. CONCLUSIONS 
We have presented the results of our investigation of 

BIST for a commercial generic SoC using the Atmel 
AT94K with FPGA core, RAM cores, and a processor 
core. Our original intent was to apply the BIST methods 
proposed in [1] to this device; specifically to program 
the FPGA core to test itself and then use the FPGA core 
to test the other cores in the device. The FPGA core 
could be configured for BIST of the programmable 
logic and routing resources. In addition, the FPGA core 
could be configured for BIST of the small RAM cores 
dispersed throughout the FPGA. However, the limited 
interfaces and access between the FPGA core and the 
remaining cores prevented BIST of those cores using 
the FPGA core as the primary test resource. Partial 
BIST of the dual-port data RAM could be performed by 
the FPGA core in the form of a single-port RAM BIST 
with background data sequences for pattern sensitivity 
and coupling faults. A complete dual-port RAM test 
could not be performed without the use of the processor 
core. Furthermore, the processor and program memory 
cores could not be tested by the FPGA core. While the 
basic ideas proposed in [1] are good, the ability to real-
ize the ideas in practice is a function of the interconnect 
and accessibility between the FPGA core and the other 
cores to be tested. An FPGA core with complete access 
to all I/O of a core to be tested can provide BIST re-
sources for that core. Therefore, it is important to 
maximize the interconnect between an FPGA core and 
any other core to be tested by the FPGA in an SoC im-
plementation. 

In our development, the processor core turned out to 
be the primary testing resource instead of the FPGA 
core. Furthermore, the ability of the processor core to 
perform dynamic partial reconfiguration of the FPGA 
core leads to more than an order of magnitude im-
provement in the total testing time for the FPGA core 
when compared to downloading individual BIST con-
figurations. Only one BIST configuration must be 
downloaded into the FPGA along with the program exe-
cuted by the processor for the partial reconfiguration for 
subsequent BIST configurations, execution of the BIST 
sequence and retrieval of the BIST results. Currently we 



  

use one download for logic BIST, one for each type of 
routing BIST test session (repeaters and global cross-
point PIPs), and one download for each type of RAM 
core (free RAMs and data/program memory). As a re-
sult, only five BIST configurations need to be 
downloaded for complete testing of the FPGA core and 
RAM cores to execute a total of 59 BIST configura-
tions. This greatly reduces the amount of storage needed 
to hold the BIST configurations for system-level testing. 

The most important key to efficient reconfiguration 
of the FPGA core by the processor core appears to be a 
regular BIST structure that can be algorithmically gen-
erated and reconfigured by the processor core. This in-
cludes all BIST structures implemented in the FPGA 
core. Irregular functions, such as the TPG circuitry for 
the RAM BIST sequence for example, should be im-
plemented and executed as programs in the processor 
core whenever possible. 

We are currently exploring the possibility of per-
forming all testing of the FPGA core and RAM cores 
with a single processor program for the generation and 
reconfiguration of the various BIST configurations. This 
will result in further reductions in testing time and 
memory storage required for the system-level applica-
tion of BIST for the SoC. In addition, we intend to in-
corporate diagnostic algorithms in the program for on-
chip diagnosis to facilitate fault-tolerant operation of the 
FPGA core and RAM cores in SoC. 
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